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Next generation microscopes…again

Guilliams M et al. Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic 
macrophage niches. Cell. 2022 Jan 20;185(2):379-396.e38



Why do we need spatial omics ?

Tissue architecture Spatial niches

(e.g. tumor microenvironment)

Cellular heterogeneity

Cell-cell interactions

Spatial gradients

Computational models of cells and tissues

Find new types of (spatial) biomarkers



What types of data do we 
need to study functional cell-
cell communication ?



Ligands:

Proteomics, metabolomics,

Imaging,…

Receptors:

Proteomics,

(Imaging) Flow 

cytometry,
CITE-seq,

Imaging,…

Signalling:

Proteomics,

Imaging,…

Gene 

regulation:

scRNAseq, 

scATACseq, 
CHiPseq,

…

Spatial location:

Spatial proteomics,

Spatial transcriptomics,

Spatial metabolomics,
…

Dynamics:

Time series, 

perturbations (e.g. 

Perturbseq, CRISPr, 
ligand treatments), 

intravital imaging

…



multiple modalities

+ spatial context 

 

+ AI/computational 

models of cellular 

interactions and    

gene regulation

Towards functional spatial “omics”



Building the foundations for next-generation pathology

  a  i a   a     g 



The reality check of spatial omics:
#1 A variety of platforms calls for unified pipelines

MC1 Merscope CosMx Xenium

FF FF/FFPE FF/FFPE FF/FFPE

100 plex 140, 300, 500 plex 1000 plex 350 plex (100 

custom)

Flexible panel Flexible panel Fixed panel Fixed and flexible 

panel

RNA only RNA + limited IHC RNA + IHC RNA + IHC

ROI small ROI medium ROI big ROI big

StereoSeq
STOmics

We don’t want a separate pipeline for each platform -> Unified pipelines

Sang-aram, C. et al. (2024) Spotless, a reproducible 
pipeline for benchmarking cell type deconvolution in 
spatial transcriptomics.   eLife 12:RP88431.



The reality check of spatial omics:
#2 The size of the data calls for scalable solutions

Images: 23,6 GB* 7 z-stacks * 5 stainings=

822 GB of images!

Raw images

Sometimes processed data is already available

We need scalable solutions that work on many 

different computing infrastructures



The reality check of spatial omics:
#3 Limited functionality of the vendor tools

VizGen Visualizer Xenium Visualizer Cosmx Visualizer

▪

▪

▪

▪

▪

▪

▪

▪

▪

Pr ’   n’ 

We need more powerful, open and reproducible tools with better functionality



The reality check of spatial omics:
#4 Best results require the biologist in the loop

▪



SPArrOW: a flexible, scalable, modular and 
interactive Spatial Omics Workflow

13

Lotte Pollaris



SPArrOW: a scalable, modular and interactive workflow 
for spatial omics with improved quality control

QC metrics and plots

Pollaris L. et al. SPArrOW: a flexible, interactive and scalable pipeline for spatial transcriptomics analysis. bioRxiv 2024.07.04.601829
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SPArrOW is currently benchmarked on 80 spatial 
transcriptomics datasets

Human Melanoma Mouse Brain Maize Shoot apical meristem



SPArrOW is a flexible framework for spatial 
transcriptomics

SPArrOW currently supports:
• MERSCOPE (Vizgen),
• Xenium (10x Genomics)
• Molecular Cartography 

(Resolve Biosciences)
• Stereo-Seq (STOmics)
• CosMx SMI (Nanostring)
• GenePS (SpatialGenomics)
• Pyxa (Stellaromics)



QC and preprocessing … and nothing else matters

Molecular Cartography, Maize tissue VizGen MERSCOPE, liver tissue

Transcript density

                     
                      

                                 
                   

         

                          

                                

                        

                                

              

    

    

    

    

    

Outliers flagged

VizGen MERSCOPE, liver tissue



SPArrOW facilitates improved quality control, resulting 
in more robust downstream analysis

                     
                      

                                 
                   

         

                          

                                

                        

                                

              

    

    

    

    

    

Transcript density

SPArrOW Vendor



Raw image

Low quality

segmentation

Cleaned image

High quality

segmentation

Cellpose Cellpose

Illumination correction

Inpainting

Tophat filter

Contrast enhancing

Parameter tuning

Stringer, Carsen, et al. "Cellpose: a generalist algorithm for cellular segmentation." Nature methods 18.1 (2021): 100-106.

QC and prepocessing enhances cell segmentation



Nuclear segmentation using DAPI stain results in the 
cleanest results

Nucleus
Expanded Nucleus
Voronoi

'ground truth’ 

cellshape

Full cell segmentation



Improving cell segmentation using multiple stains

These can improve cell 

segmentation, but:

• Cell type specific

• Tissue specific
• T e  d n’  a wa   w rk



A human-in-the-loop model drastically improves cell 
segmentation and annotation

Sparrow-Napari interactive interface
+

Pretrained Cellpose model (cyto2)

Manual annotation of 116 cells



A human-in-the-loop model drastically improves cell 
segmentation and annotation

• Human-improved SPArrOW identified 33% more cells across all cell types with high transcript densities 
• Many of these additional cells are region and cell-type-specific
• Most strikingly, cholangiocyte detection increased by 50%, impacting any downstream data 

interpretation 

Average transcript counts Number of cells Transcript density



SPArrOW improves cell type annotation from spatial 
transcriptomics data

SPArrOW

Tangram

Tacco

Score_genes (Scanpy)

NNLS

Cluster

purity



Metrics to evaluate the annotation algorithms

1.

2.

3.

4.



Multi-objective cell type annotation evaluation



Multi-objective cell type annotation evaluation



Multi-objective cell type annotation evaluation



Take-away messages

▪

▪

▪

▪

▪

▪

▪



SPArrOW flexibly scales to gigapixel images

Runtime Memory usage



Scalable tooling, interoperability and acceleration

High-performance computingBig Data file formats



Marconato, L., Palla, G., Yamauchi, K.A. et al. SpatialData: an open and universal data framework for spatial omics. Nat Methods 22, 58–62 (2025)



Microscopy
images, …

Segmentation 
mask

Raster 
geometries

Vector 
geometries

Transcripts 
locations

Cells, ROIs,
…

Gene expression, 
cell types, …

Annotations

Annotates

Data representation is abstracted as a modular 
combination of reusable elements



Data representation is abstracted as a modular 
combination of reusable elements

Segmentation 
mask

Transcript 
locations

Cells, ROIs,
…

Gene expression, 
cell types, …

Read/write In memory:

On disk:

Microscopy
images, …

language 

agnostic

Annotates



SpatialData unifies the representation of spatial omics 
across technologies

Xenium

Resolution: single-molecule

Up to 5K genes

Visium

SpatialData

Resolution: 55µm

Transcriptome-wide

Visium HD

Re   u i n: 2µm, 8µm, 16µm, …

Transcriptome-wide

● Interoperability across 

analysis methods

● Simple read/write

● Flexible representation

● Object manipulation

Preview Data: FFPE Human Lung Cancer with Xenium Multimodal Cell Segmentation Visium HD Spatial Gene Expression Library, Mouse Small Intestine (FFPE)Data: https://www.10xgenomics.com/products/xenium-in-situ/preview-dataset-human-breast



Scalable and resilient parallel and distributed 
computation using Dask

An analysis run visualized with the Dask Dashboard: 

docs.dask.org/en/latest/dashboard.html

A Dask Array is 

just a collection of NumPy Arrays



Scalable and resilient parallel and distributed 
computation using Dask





SPArrOW allows flexible usage

▪

1.

2.

3.

Visual, direct feedback, 

but very slow on large 

datasets: subset selection 

possible

Less flexible

Note: you can run napari 

from notebooks too! 

Example: Interactive parameter tuning  in napari



Segmentation 
mask

Cells, ROIs
…

Cell expression, 
cell types …

Microscopy
images …

Annotates

 
 

 
 
 
  

 

SeuratObject

SingleCellExperiment

SPArrOW output is interoperable with R

Louise Deconinck

Cannoodt R, Zappia L, Morgan M, Deconinck L (2025). anndataR: AnnData interoperability in R.

R package version 0.99.0, https://github.com/scverse/anndataR, https://anndatar.data-intuitive.com/. 

Future support for complete SpatialData object in R: https://github.com/HelenaLC/SpatialData

https://anndatar.data-intuitive.com/
https://anndatar.data-intuitive.com/
https://anndatar.data-intuitive.com/
https://github.com/HelenaLC/SpatialData


Harpy: Spatial proteomics analysis that makes you 
happy

Benjamin Rombaut

https://github.com/saeyslab/harpy
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