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Part I: Mapping Cell Type Specific SVGs



Spatially Variable Genes (SVGs)

Identifying SVGs is important for characterizing the spatial and 
functional organization of complex tissues.



• Many previously identified spatially variable
genes are cell type marker genes

• They display spatial expression patterns
that mirror the distribution of distinct cell
types

Spatially Variable Genes (SVGs)



• However, a substantial fraction of previously discovered 
SVGs, which we will refer to as cell type-specific spatially 
variable genes (ct-SVGs)

• They display diverse spatial expression patterns within a 
specific cell type 

Cell Type-Specific SVGs



SVGs vs ct-SVGs



Detecting these ct-SVGs holds the potential to 
• delineate the spatial transcriptomic heterogeneity within a particular cell type
• understand the transcriptomic mechanisms underlying cellular heterogeneity

Detecting ct-SVGs



Single Cell Resolution Data
• Directly apply existing SVG detection methods such as SPARK and SPARK-X on cells from a 

particular cell type
• Reasonably effective, though power can vary depending on which method is applied

Spot Resolution Data
• Apply existing SVG detection methods while controlling for cell type information

• Excessive false signals
• Apply CSIDE, which was originally developed in the context of spatial differential 

expression analysis
• Analysis failure in a significant proportion of genes
• Producing p values exactly equaling to one in a substantial fraction of the remaining

Modifying Existing Approaches to Detect ct-SVGs 



For each gene, Celina models the gene’s spatial expression pattern with respect to the cell type 
distribution across tissue locations:

n x 1
gene expression

n x c 
covariates

n x 1 cell type 
composition

n x 1
residual errors

n: number of locations
c: number of covariates 𝑦𝑦 = 𝑊𝑊𝑊𝑊 + 𝑥𝑥 ⋅ 𝑏𝑏 + 𝑒𝑒

n x 1 cell type 
specific expression

Celina: CELl type-specific spatially variable gene IdentificatioN Analysis

c x 1
coefficients

𝑒𝑒 ∼ 𝑁𝑁(0,𝜎𝜎𝑒𝑒2)



Cell type specific expression is decomposed into three parts

n x 1 
spatial effect

Decompose Cell Type Specific Expression

n x 1 
non-spatial effect

b = 1𝑛𝑛𝑏𝑏0 + 𝑏𝑏𝑠𝑠 + 𝑏𝑏𝑟𝑟

cell type 
specific mean

𝑏𝑏𝑠𝑠 ∼ 𝑀𝑀𝑀𝑀𝑀𝑀(0,𝜎𝜎𝑠𝑠2𝐾𝐾) 𝑏𝑏𝑟𝑟 ∼ 𝑀𝑀𝑀𝑀𝑀𝑀(0,𝜎𝜎𝑟𝑟2𝐼𝐼)

K is a spatial kernel



• Directing ct-SVGs is equivalent to testing 𝐻𝐻0:𝜎𝜎𝑠𝑠2 = 0

• Perform inference based on penalized quasi-likelihood followed by an average information
algorithm for mixed model

• Use different kernels to capture distinct spatial correlation structure

• Obtain a score test statistic for each kernel

• Calculate the exact p-value based on a mixture of chi-squares

• Combine k p-values through the Cauchy combination rule

Inference Procedure



Celina Overview



Simulations

• 20% genes are SVGs
• 70% genes are cell type-specific SVGs (Null)
• 10% genes are cell type-specific SVGs (Alternative)

Different regions contain 
distinct cell type compositions



Simulated Spatial Patterns

Expression

Random Gradient Streak Hotspot



• Celina, SPARK and SPARK-X have
calibrated Type I error control

• CSIDE generates a large proportion
of p-values = 1

Single Cell Resolution Simulations: Type I Error



Spot Resolution Simulations: Type I Error

• Celina achieves calibrated Type I
error control

• SPARK and SPARK-X produces
inflated p-values

• CSIDE generates a large proportion
of p-values = 1



• Celina is better in
detecting the gradient
pattern and performs
similarly to SPARK in
other two patterns.

• CSIDE achieves very low
power compared to
other three methods.

Single Cell Resolution Simulations: Power



Spot Level Simulations: Power

•Celina outperforms 
the other methods 
across all patterns.

•More accurate cell 
type deconvolution by 
CARD leads to higher 
power.



• 10X Visium
• Followed standard filtering, used 17,257 genes 

measured on 3,813 locations for analysis
• Performed cell type deconvolution on spots using 

Salcher et al. 2022 as single cell reference

Real Data Application: Human Lung Cancer



QQ plot: Celina permuted p-values QQ plot: Celina vs CSIDE permuted p-values

QQ plots under the permuted null

Type I Error Control



Algorithm Convergence Rates and p-value Distributions



Number of Genes Detected



Enrichment of Top Detected Genes in Existing Functional Databases



ct-SVGs are Classified into Three Categories



Detection of Tumor Boundary with ct-SVGs



Genes in Tumor Boundary are Enriched in Pathways Related to 
Tumor Microenvironment



RGMA

EFNA1

Tumor cells

Two Example Tumor ct-SVGs



Tumor cells Pseudotime

Inferring Trajectory in Tumor



Transcription factors Target genes

Pseudotime

Many ct-SVGs are Associated with Tumor Trajectory



Part II: Mapping Subcellular SVGs



Introduction
Spatial transcriptomics

ST enables transcriptomic profiling on tissues with spatial localization information.

Ref: Stereo-seq (2022), 10xgenomics.com (2024)
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Introduction
High-resolution spatial transcriptomics

An overview of selected high-resolution ST techniques.
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Introduction
High-resolution spatial transcriptomics

High-resolution ST enables precise gene expression measurement at subcellular level.

Ref: Xenium.com (2024)
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Introduction
Subcellular localization of mRNAs

Understanding mRNA spatial localization within cells is crucial for unraveling the com-
plexity of cellular structure and function. For example:

• Facilitate the localized protein synthesis – beta actin in fibroblasts.

• Contributes to cellular organization/differentiation – Oskar in drosophila embryo.

• Misplacement can often lead to detrimental effects – Huntington’s disease.

Ref: Martin and Ephrussi (2009)
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Introduction
Characterizing subcellular mRNA localization

We propose subcellular expression localization analysis (ELLA), a statistical method for
modeling the subcellular localization of mRNAs and detecting genes that display spatial
variation within cells in high-resolution ST.

The key features of ELLA include:

• based on over-dispersed nonhomogeneous Poisson
process model;

• estimates various subcellular localization patterns;

• compatible with arbitrary number of cells;

• compatible with diverse ST techniques;

• effective type I errors control and high power;

• scalable to tens of thousands of genes and cells;

• interpretable patterns with pattern-specific mRNA
characteristics.
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Method
Method overview

As a method overview, ELLA takes spatial gene expressions, nuclear centers, and cell
boundaries as inputs to perform data pre-processing, model fitting, and testing and
estimation.
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Method
Data pre-processing

Provided the nuclear center and cell boundary of a cell, the relative positions of the
transcripts are calculated.
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Method
Data pre-processing

The relative position ranges between 0 and 1 and allows us to create a unified coordinate
system across cells, enabling the joint modeling of multiple cells regardless of their sizes
and shapes.
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Method
Model fitting

Wemodel the mRNA localization within each cell using an over-dispersed one-dimensional
nonhomogeneous Poisson process (NHPP) model, which is effectively a tailored Cox Pro-
cess model. Specifically, we assume that the counts summed cross all relative positions
rij within an interval [a,b] follows a Poisson distribution:∑

rij∈[a,b]

yij(rij) ∼ Poi(

∫ b

a
λ∗
i (r)dr),

λ∗
i (r) = cis(r)λ(r) + ϵi(r).

• rij relative position of location j in cell i;
• yij mRNA counts corresponding to rij ;
• λ∗

i (r) NHPP density;
• ϵi(r) follows a normal distribution to model over-dispersion;
• ci total read depth of cell i;
• s(r) normalizing term 2πr;
• λ(r) the subcellular spatial expression intensity function shared across cells. 9/29



Method
Model fitting

The unknown intensity function λ(r) captures the subcellular spatial expression pattern
along the cellular radius. We use k beta kernel functions φ1, . . . , φk to capture the
intensity function:

λ(r) = αl + βlφl(r), l = 1, . . . , k.

We maximize the log likelihood using Adam and obtain the MLE α̂l and β̂l across kernels.
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Method
Testing and estimation

Testing:
Under the proposed NHPP model, identifying genes that display subcellular spatial ex-
pression pattern is equivalent to testing whether λ(r) is a constant or not. Specifically,
for each kernel in turn, we test the null hypothesis H0: βl = 0 using likelihood ratio test
and obtain k P values. The k P values are combined using Cauchy combination rule.
We control the FDR across genes using the Benjamini-Yekutieli.

{P1, . . . , Pk} → Pcombined → PFDR

Estimation:
We obtain the k estimated intensity functions across kernels λ̂l(r) = α̂l + β̂lφl(r). The
λ(r) is estimated as the weighted combination in the form of λ̂(r) =

∑k
l=1wlλ̂l(r)

based on Bayesian model averaging.

{λ̂1(r), . . . , λ̂k(r)} → λ̂(r)
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Simulations
Competing methods

SPRAWL (eLife, 2023):

Bento (GB, 2024):

Wilcox (current study):
Nucleus vs cytoplasm

Compatible with ELLA SPRAWL Bento Wilcox

One cell ✓ ✗ ✓ ✗

Multiple cells ✓ ✓ ✗ ✓

Imaging data ✓ ✓ ✓ –

Sequencing data ✓ ✗ ✗ –

P values ✓ – ✗ –

Patterns Various 4 5 1

Required inputs ELLA SPRAWL Bento Wilcox

Nuclear center ●

Nuclear boundary ● ●

Cell centroid ●

Cell boundary ● ● ● ●
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Simulations
Null simulations: compare ELLA with SPRAWL and Wilcox

• Sampled n different embryonic fibroblast cells from a se-
qFISH+ data and simulated expression counts for 1,000
genes to be randomly distributed within these cells.

• Nuclear boundary information was provided to Wilcox.
• P values from ELLA and SPRAWL (of produced) are well
calibrated across settings.

• P values from Wilcox are inflated.
• Varying number of cells (n=10-500) and expression level
(m=1-100).
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Simulations
Alternative simulations – multiple cells: compare ELLA with SPRAWL and Wilcox

• Evaluated power based on a fixed
false-discovery rate (5%).

• ELLA achieves consistently higher
power except for the radial-unif set-
ting.

• ELLA also accurately recovers the
true patterns (Appendix).

• Varying number of cells (n=10-
500), expression level (m=1-100),
and pattern strength (s=0.1-1.0).
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Simulations
Alternative simulations – one cell: compare ELLA with Bento

• Five symmetric patterns: gene expression is enriched in nu-
cleus (including 2 patterns), nuclear edge (1), cytoplasm
(1), or cellular boundary (1).

• High expression level (m=30) and a high pattern strength
(s=9).

• Nuclear boundary information was provided to Bento.
• Because Bento cannot produce P values, we used the pre-
diction probabilities output from Bento to rank genes, with
which we measured powers based on FDR.

• ELLA achieves high power and accuracy across all five pat-
terns, consistently outperforming Bento.
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Real Data Applications
I Seq-Scope mouse liver data

We first applied ELLA to the (sequencing-based) Seq-Scope mouse liver data.

• The data contains ten 1mm-wide circular tiles with a spatial resolution around 0.6 um.
• Cell segmentations were obtained based the H&E images using Cellpose.
• Nuclear centers were identified based on unspliced expression density.
• We applied ELLA to 4 hepatocyte cell types with 497-1,349 genes and 82-276 cells.
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Real Data Applications
I Seq-Scope mouse liver data

ELLA identified 345 genes across cell types displaying 5 subcellular expression patterns.

• 101 genes (29%) display a nuclear expression pattern (clusters 1), 34 (10%) genes
display a nuclear edge expression pattern (cluster 2), and 210 genes (61%) display one
of the three cytoplasmic expression patterns (cluster 3-5).
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Real Data Applications
I Seq-Scope mouse liver data

The detected genes under different patterns show different mRNA characteristics.

• Nucleus localized (cluster 1) genes have higher snRNA expressions levels.
• Nucleus localized (cluster 1) genes have higher unsplice/splice ratios.
• Nucleus localized (cluster 1) genes have longer gene lengths.
• Cytoplasmic localized genes (clusters 4-5) frequently encode signal recognition pep-
tides (SRPs).
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Real Data Applications
II Stereo-seq mouse embryo data

We next applied ELLA to the (sequencing-based) Stereo-seq mouse embryo data E1S3.

• We focused on two major cell types localized in the cardiothoracic region: myoblasts
(596 cells with 2,008 genes) and cardiomyocytes (553 cells with 1,743 genes).

• Cell segmentations were obtained based on nucleic acid staining image using Cellpose.
• Nuclear centers were identified based on unspliced expression density.
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Real Data Applications
II Stereo-seq mouse embryo data

ELLA identified 568 genes across cell types displaying 5 subcellular expression patterns.

• 56 genes (10%) display a nuclear expression pattern (clusters 1), 346 genes (61%)
display one of the two nuclear edge expression patterns (cluster 2-3), and 166 genes
(29%) display one of the two cytoplasmic expression patterns (cluster 4-5).
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Real Data Applications
II Stereo-seq mouse embryo data

The detected genes under different patterns show different mRNA characteristics.

• Cluster 1-3 genes have higher unsplice/splice ratios.
• Cluster 1-3 genes have longer gene lengths.
• Cluster 1-3 genes contain a higher proportion of transcription factors (TFs).
• Cluster 4-5 genes contain a higher proportion of ribosomal protein (RP) genes.
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Real Data Applications
III seqFish+ mouse embryonic fibroblast data

We next applied ELLA to the (imaging-based) seqFish+ embryonic fibroblast data.

• The data contains 2,747 genes measured on 171 embryonic fibroblast cells.
• Nucleus and cell segmentations are provided and the nuclear center is obtained as the
geometric center of all nuclear boundary points.
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Real Data Applications
III seqFish+ mouse embryonic fibroblast data

ELLA identified 2,744 genes displaying 5 subcellular expression patterns.

• 32 genes (1%) display a nuclear expression pattern (cluster 1), 1,073 genes (39%)
display one of the two nuclear edge expression patterns (clusters 2-3), and 1,639 genes
(60%) display one of the two cytoplasmic expression patterns (clusters 4-5).
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Real Data Applications
III seqFish+ mouse embryonic fibroblast data

The detected genes with different patterns show different mRNA characteristics.

• Cluster 1-3 genes have longer gene lengths.
• Cluster 1-3 genes contain a higher proportion of transcription factors (TFs).
• Genes can exhibit dynamic subcellular localizations during the cell cycle. For example,
some genes have decreased nuclear enrichment in G1 phase, while others maintaining
their patterns of enrichment regardless of cell cycle phases.
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Real Data Applications
IV MERFISH mouse brain data

We last applied ELLA to the (imaging-based) MERFISH adult mouse brain data.

• We focused on 4 major cell types localized in a mid-brain (EX, IN, Astr, Olig) with
557-878 genes and 480-948 cells.

• Cell segmentations are provided by the study.
• Nuclear centers were obtained using the cell centroids from the study.
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Real Data Applications
IV MERFISH mouse brain data

ELLA identified 801 genes displaying 4 subcellular expression patterns.

• 337 genes (42%) display a nuclear expression pattern (cluster 1), 125 (16%) genes
display a nuclear edge expression pattern (cluster 2), and 339 genes (42%) display one
of the two cytoplasmic expression patterns (clusters 3-4).
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Real Data Applications
IV MERFISH mouse brain data

The detected genes with different patterns show different mRNA characteristics.

• Cluster 1-2 genes have higher snRNA expression levels.
• Cluster 1-2 genes have longer gene lengths.
• Cluster 4 genes contains a lower portion of transcription factors (TFs).
• Cluster 4 genes are related to dendrites and synaptic transmission and signaling.
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Conclusions

• ELLA models and detects spatially variable genes within cells that display various
subcellular spatial expression patterns in high-resolution spatial transcriptomics.

• ELLA models the spatial distribution of gene expression measurements along the
cellular radius using a nonhomogeneous Poisson process, leverages multiple kernel
functions to detect a variety of subcellular spatial expression patterns, and is capable
of analyzing a large number of genes and cells.

• ELLA not only identifies genes with distinct subcellular localization patterns but
also reveals that these patterns are associated with unique mRNA characteristics.

• Preprint available on bioRxiv (614515)
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• Celina identifies cell type-specific SVGs across a variety of spatial transcriptomics 
platforms, achieving calibrated type I error control with substantial power gain both single 
cell and spot resolution spatial transcriptomics. 

-- Lulu Shang*, Peijun Wu*, and Xiang Zhou (2025). Statistical identification of cell type-specific spatially variable genes in 
spatial transcriptomics. Nature Communications. 16: 1059.

• ELLA models and detects spatially variable genes within cells that display various 
subcellular spatial expression patterns in high-resolution spatial transcriptomics, revealing 
unique mRNA characteristics that underlie these patterns.

-- Jade Xiaoqing Wang, and Xiang Zhou (2025). ELLA: Modeling subcellular spatial variation of gene expression within cells in 
high-resolution spatial transcriptomics. Nature Communications. in press.

• Both Celina and ELLA are available on our lab website: 
https://xiangzhou.github.io/software

Summary

https://xiangzhou.github.io/software
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