SpatialData: an open and universal data framework for spatial omics

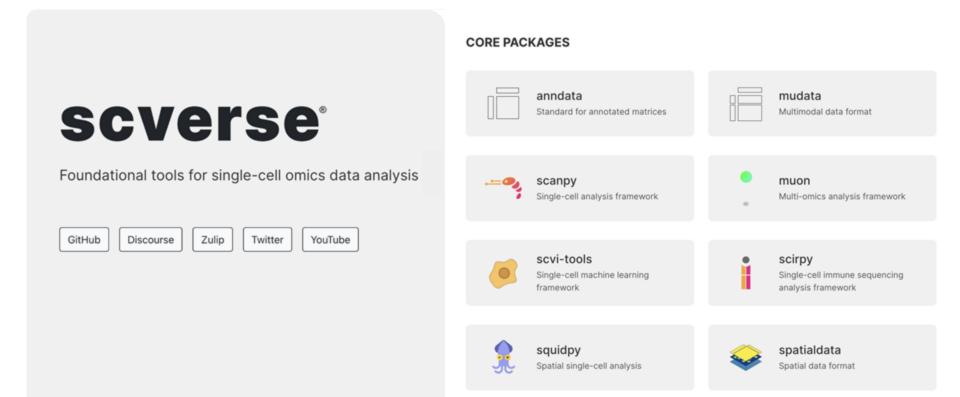
Quentin Blampey Luca Marconato

AI & ML in Spatial Single-Cell Transcriptomics Workshop 16 Oct 2025 - Lyon (France)

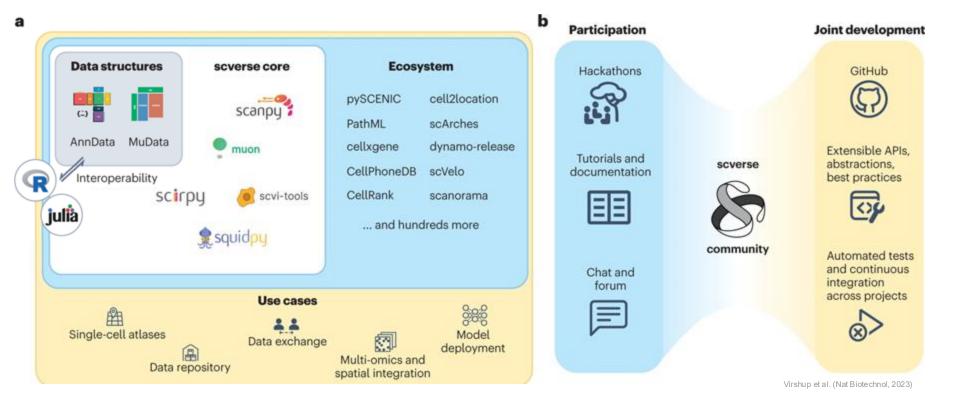
Documentation notebooks

Learning resources

We believe that interoperable foundational software can accelerate science



We facilitate the growth of an ecosystem of methods, built upon our core libraries



Talks overview

From upstream packages to downstream tasks

Data structure for spatial omics

Official scverse data structure

As a contributor, I talk on behalf of scverse and Luca Marconato

nature methods

Analysis toolkit for spatial omics

scverse ecosystem package

Author and maintainer

nature communications

Deep learning / foundation model for spatial domains

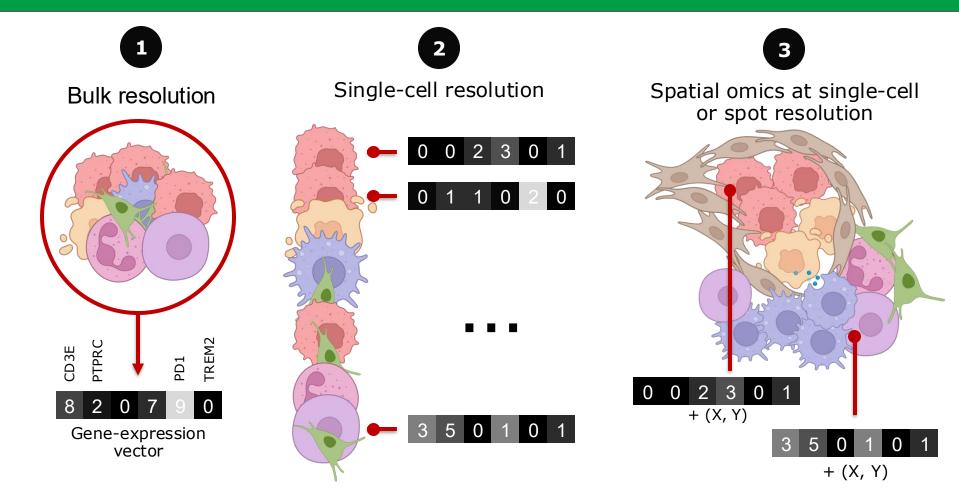
scverse ecosystem package

Author and maintainer

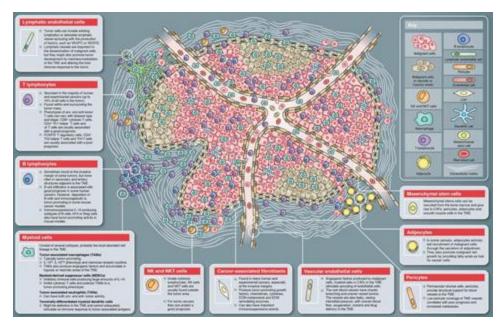
accepted in nature methods

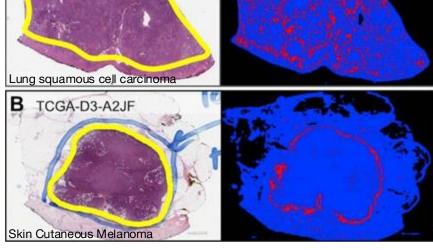
This talk

Spatial technologies enable the quantification of biological processes in the tissue context



Spatial organization plays a crucial role in disease progression





TCGA-33-AASL

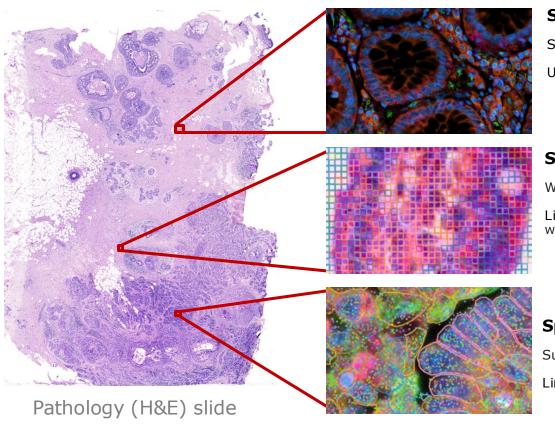
Adapted from Balkwill et al. (J. Cell Sci, 2018)

Adapted from Saltz et al. (Cell Reports, 2018)

Tumor microenvironments are organized in complex spatial structures

In this study, lymphocytes (red) infiltrating beyond the tumor boundaries (yellow) are linked with better prognosis

Different types of omics data



Spatial proteomics

Staining images (one channel = one protein)
Up to 100 proteins (3 shown here)

Spatial Transcriptomics (NGS-based)

Whole-transcriptome sequencing

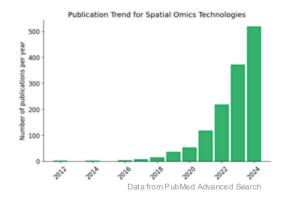
Limited to the spot resolution (subcellular resolution with the Visium HD)

Spatial Transcriptomics (imaging-based)

Subcellular resolution (3D transcript location)

Limited in number of different genes

Representing and operating on spatial omics data is becoming increasingly complex



Formats for

BaristaSea MIBI-TOF Cartana IIS Molecular Cartography DBiT-sea NanoString CosMx SMI **FISSEO** NanoString GeoMx DSP G4X Nova-ST **HDST** osmFISH IMC/Hyperion Open-ST LCM PLISH. MALDI Pixel-sea **MERFISH** Rebus Bio

RNA SPOTS RNAscope SABER-FISH seqFISH+ Seq-scope Slide-DNA-seq Slide-seq v2 smFISH SpaceM ST

XYZeq

Stereo-seq
StarMAP
Tomo-seq
Visium (SpaceRanger 1.0.0, 1.1.0, 1.2.0, 1.3.0, 1.3.1, 2.0.0, 2.0.1, 2.1.0, ...)

Visium HD
Xenium (Xenium Analyzer 1.0.2, 1.3.0, 1.4.0, 1.5.0, 1.6.0, 1.7.0, 2.0.0, 3.0.0, 3.0.1, ...)

Formats for raster data

ng jpg

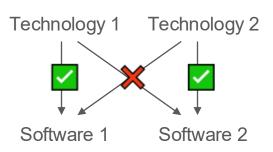
Common compressed raster formats

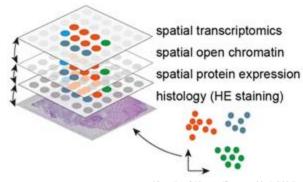
.h5 .zarr

Tensor storages

Multiscale storages

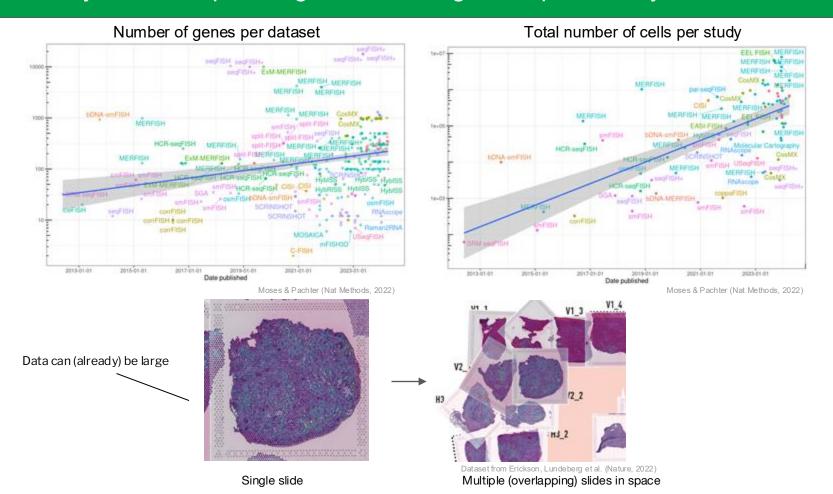
Formats for





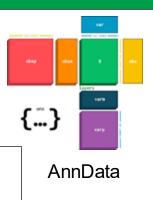
Kiessling & Kuppe (Genome Med, 2024)

Scalability becomes pressing as datasets grow exponentially in size

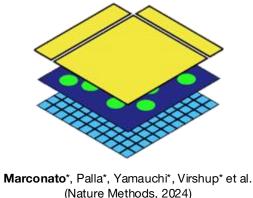


To reach the goal of building a foundational infrastructure, we bridged existing communities

Single-cell data



SpatialData



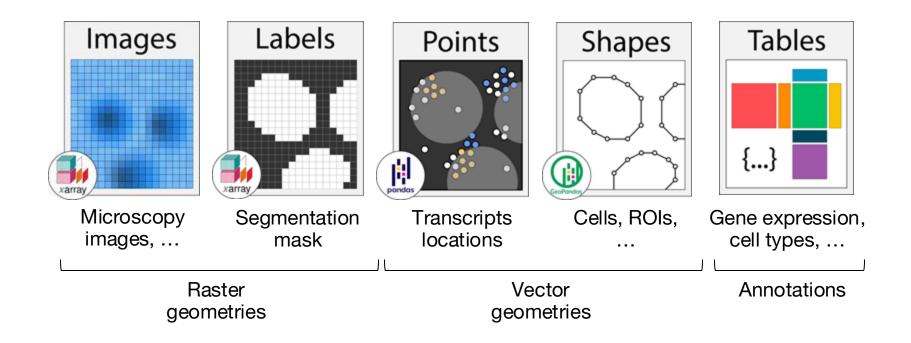
OME (Open Microscopy Environment)

Large images, standard formats

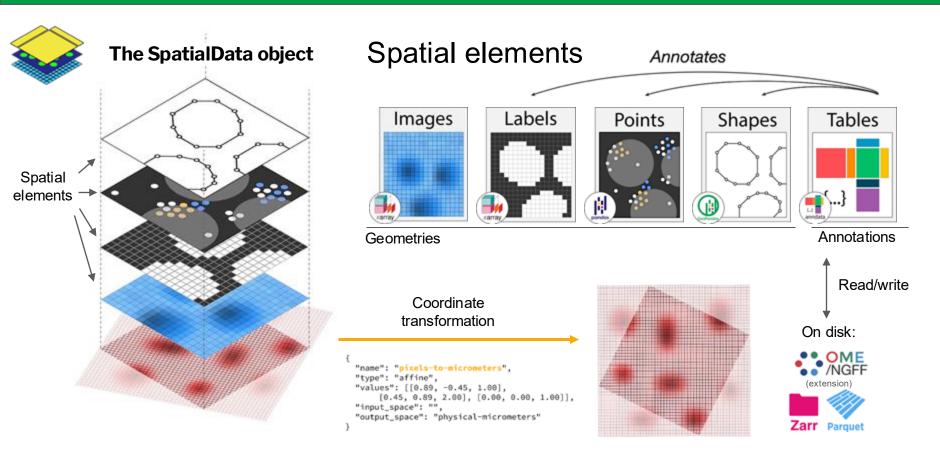
Napari core

napari
Interactive visualization

Data is represented with a modular combination of reusable elements



SpatialData introduces a modular representation for spatial omics



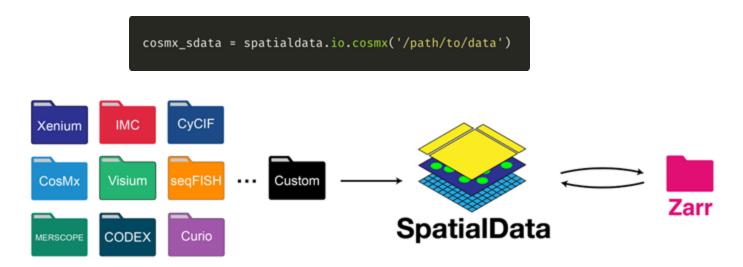
L. Marconato, O. Stegle, et al. (Nature Methods, 2024)

Chunked, multiscale representation leads to efficient image access



SpatialData IO streamlines data ingestion from popular technologies

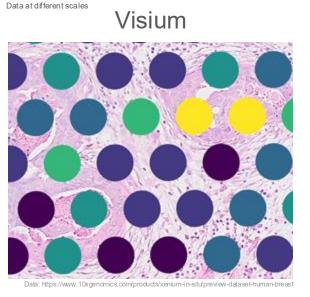
SpatialData IO (=Input Ouput)



Laurens Lehner

Blampey

Quentin Wouter-Michiel Vierdag



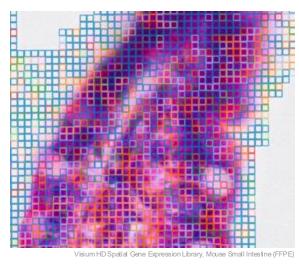
Resolution: 55µm Transcriptome-wide

Xenium



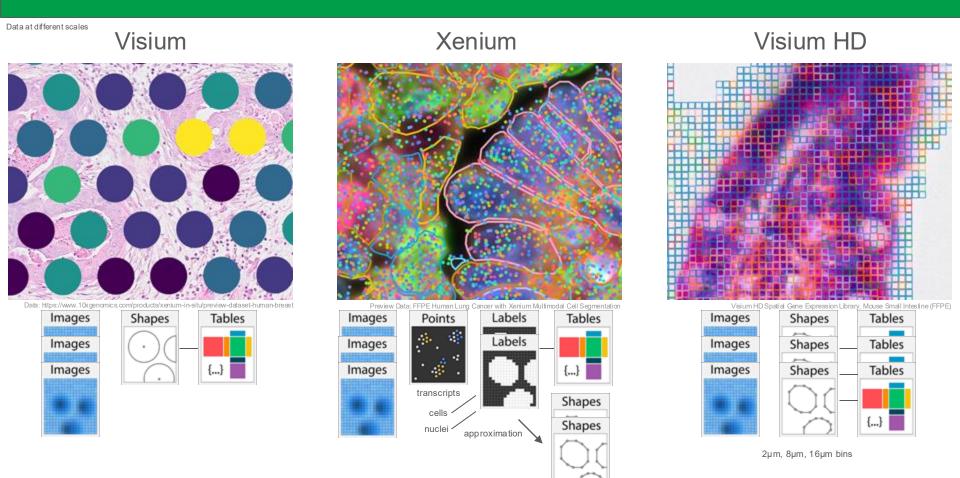
Resolution: single-molecule Up to 5K genes

Visium HD



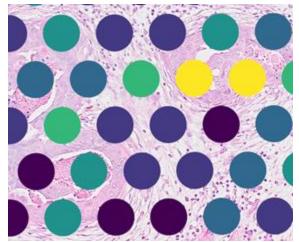
Resolution: 2µm, 8µm, 16µm, ... Transcriptome-wide

The raw data is very different across technologies



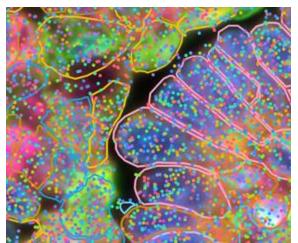
Data at different scales

Visium



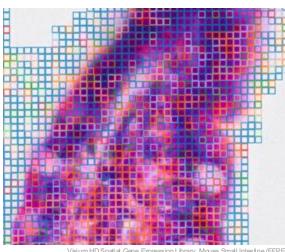
Data: https://www.10xgenomics.com/products/xenium-in-situ/preview-dataset-human-breast

Xenium



Preview Data: FFPE Human Lung Cancer with Xenium Multimodal Cell Segmentation

Visium HD



Visium HD Spatial Gene Expression Library, Mouse Small Intestine (FFPE)

Reading the data from disk:

```
from spatialdata_io import visium
sdata = visium('my_space_ranger_output')
```

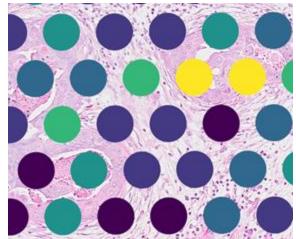


```
from spatialdata_io import xenium
sdata = xenium('my_xenium_analyzer_output')
```

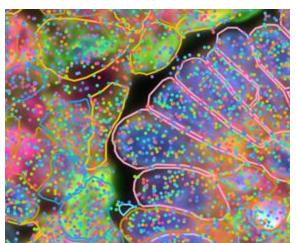

Xenium

Data at different scales

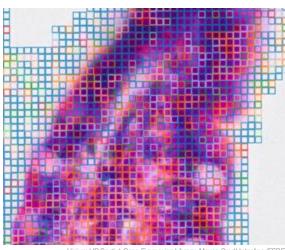
Visium



Data: https://www.10xgenomics.com/products/xenium-in-situ/preview-dataset-human-breast



Preview Data: FFPE Human Lung Cancer with Xenium Multimodal Cell Segmentation



Visium HD Spatial Gene Expression Library, Mouse Small Intestine (FFPE)

ion_Muman_Glioblastoma (Shapes)
 'downscaled_lowres', with elements:
 (YtAssist_FFPE_Protein_Expression_Human_Glioblastoma_lowres_image (Images), CytAssist_FFPE_Protein_Expression_Human_Glioblastoma_lowres_image

CytAssist_FFPE_Protein_Expression_Human_Glioblastoma_lowres_image (Images), CytAssist_FFPE_Protein_Expr_Human_Glioblastoma (Shapes)

CytAssist_FFPE_Protein_Expression_Human_Glioblastoma (Shapes)

print(sdata)

```
SpatialData object

Image:

- Image:
- "he_image": DataTree(cyx] (3, 5636, 1448), (3, 2818, 724), (3, 1469, 362), (3, 784, 181), (3, 352, 98)
- "he_image": DataTree(cyx] (1, 17698, 51187), (1, 8549, 25593), (1, 4274, 12766), (1, 2137, 639
8), (1, 1668, 3199)
- Labels:
- "cell_imbels': DataTree(yx) (17698, 51187), (8549, 25593), (4274, 12766), (2137, 6398), (1668, 3199)
- "cell_imbels': DataTree(yx) (17698, 51187), (8549, 25593), (4274, 12766), (2137, 6398), (1668, 3199)
- "cell_oundaries': DataTree with shape: (4Delayed», 11) (3D points)
- "transcripts": DataTree with shape: (4Delayed», 11) (3D points)
- "cell_circles': GeodataTrame shape: (162254, 21) (3D shapes)
- "cell_circles': GeodataTrame shape: (15254, 2) (3D shapes)
- "micleus_boundaries': GeodataTrame shape: (15628, 1) (2D shapes)
- "tables:
- "tables: AnnOnta (162254, 377)
with coordinate systems:
- "global", with elements:
- he_image (Images), morphology, focus (Images), cell_labels (Labels), nucleus_labels (Labels), transcripts
(Polats), cell_boundaries (Shapes), cell_circles (Shapes), nucleus_boundaries (Shapes)
```

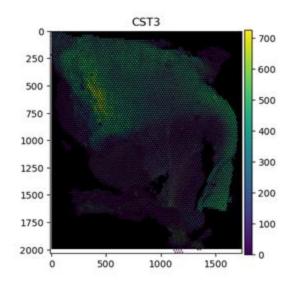
spatialdata-plot enables static, composable visualization

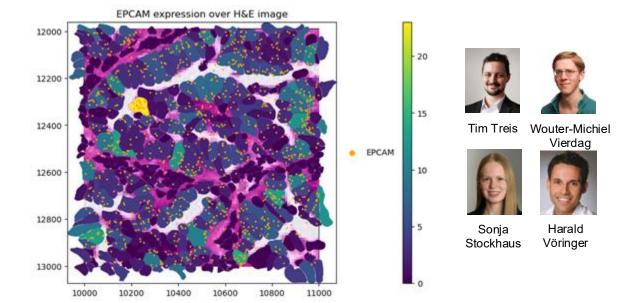
```
import spatialdata_plot

(
    sdata_visium
    .pl.render_images()
    .pl.render_shapes(color="CST3")
    .pl.show("downscaled_hires", title="CST3")
)
```

```
import spatialdata_plot

(
    sdata_xenium.
    .pl.render_images("he_image")
    .pl.render_shapes("cell_boundaries", color="EPCAM")
    .pl.render_points("transcripts", color="feature_name", groups="EPCAM", palette="orange")
    .pl.show(title=f"EPCAM expression over H&E image", coordinate_systems="global", figsize=(10, 5))
)
```

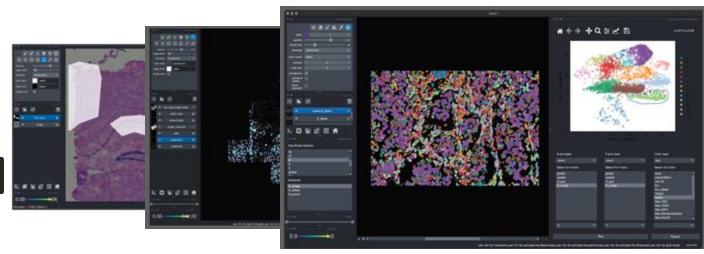




Napari SpatialData enables interactive data visualization and annotation

Napari plugin

napari_spatialdata.Interactive(cosmx_sdata)



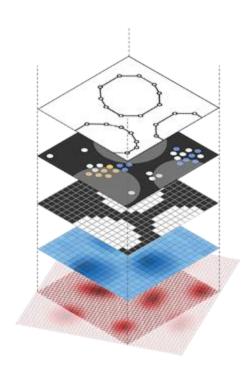
Giovanni Palla

Wouter-Michiel Vierdag

Marcela Toth

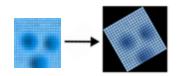
Rahul B. Shrestha

Generalized, reusable operations are defined for SpatialData objects



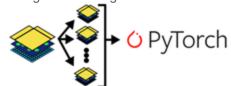
Coordinate transformations

e.g. rotate an image



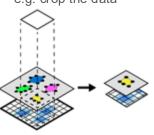
Deep learning interface

e.g. create image tiles around cells



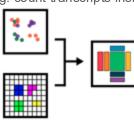
Spatial queries

e.g. crop the data

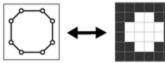


Spatial aggregations

e.g. count transcripts inside cells



Rasterize, vectorize



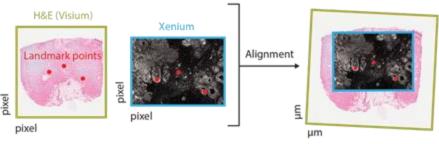
Documentation:

https://spatialdata.scverse.org/en/stable/

Some usage examples of these operations

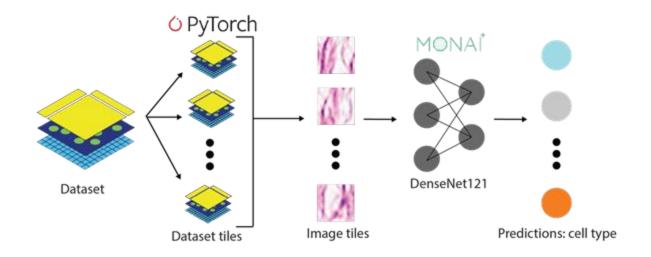
Aligning multiple modalities with a landmark-based workflow

Before alignment (raw data)

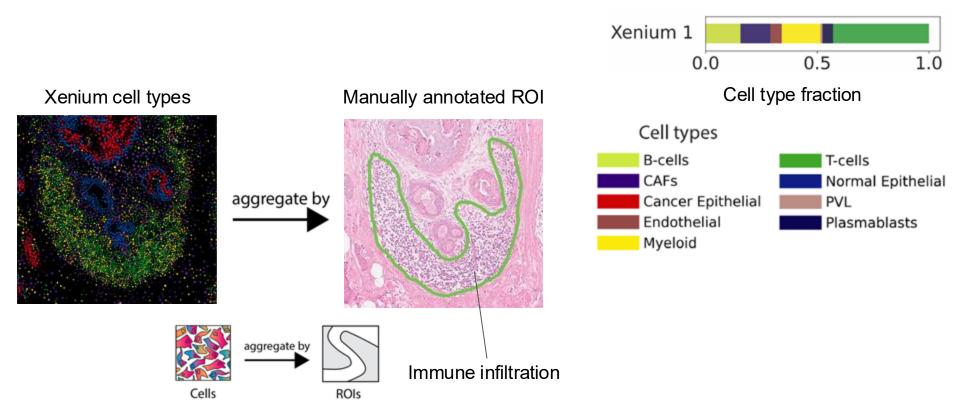


After alignment

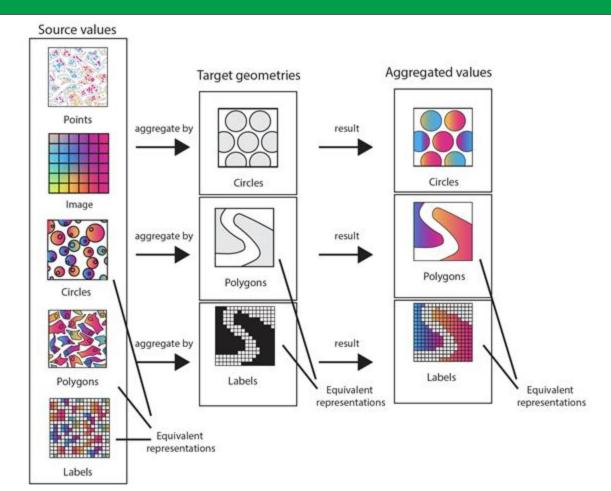
Creating deep learning datasets from multiple aligned modalities



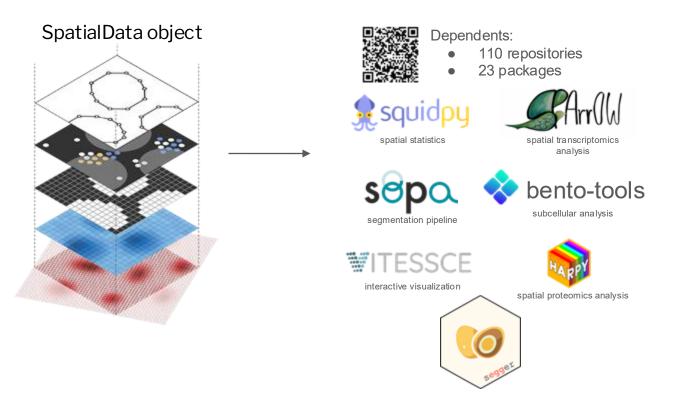
Aggregation example: computing cell types fractions within regions of interest



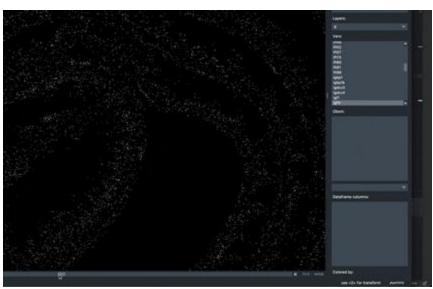
Aggregation is supported for different coordinate systems and representations



The community is enabling interoperable analysis of SpatialData objects via a growing ecosystem



Very performant visualization of 2µm Visium HD bins in napari using rasterize_bins()

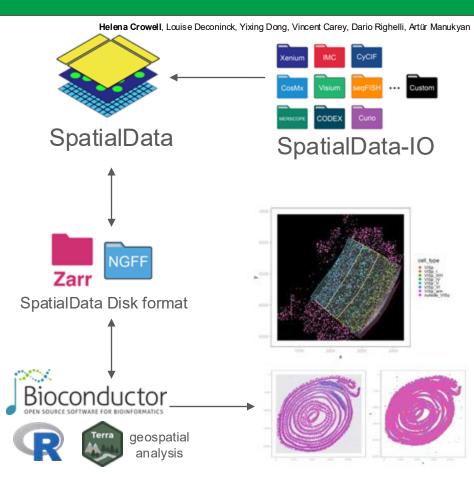


~1000x speed-up for visualizing Visium HD data in napari

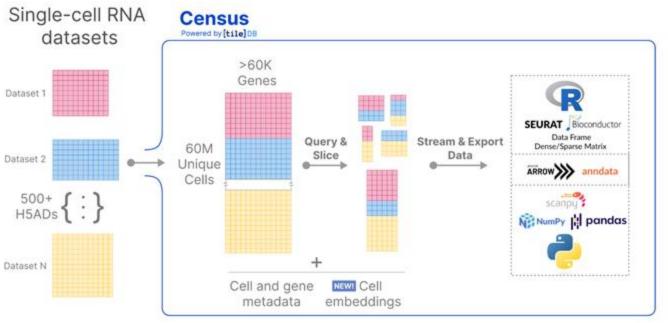
We are supporting Bioconductor developers building on top of SpatialData Zarr

Supported by: Chan
Zuckerberg
Initiative @

SpatialData Hackathon - Nov 2024, Basel (Switzerland) Python & R developers working together

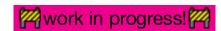


The CZI CELLxGENE Census database is expanding to spatial, and now exports to SpatialData



From https://cellxgene.cziscience.com/

We are preparing a public database of curated spatial omics datasets



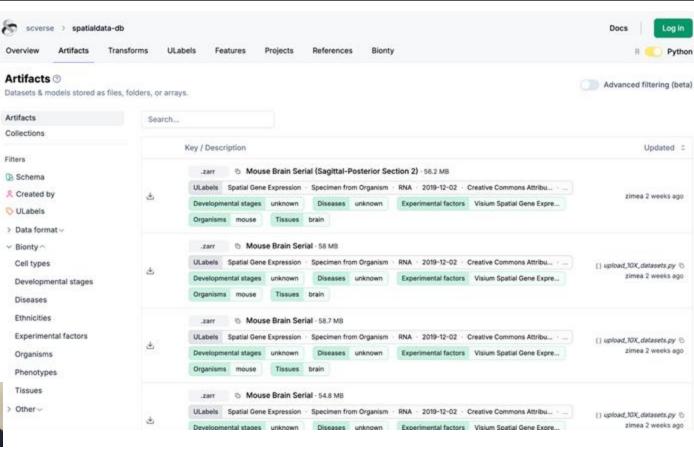
load a SpatialData dataset from the cloud
sdata_section1_query = ln.Artifact.filter(
 organisms=organisms.human,
 tissues=tissues.breast,
 description__icontains="Block A Section 1"
).one().load()
sdata_section1_query

example notebook (preview)

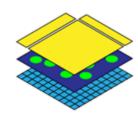
Tim Treis Lea Zimmermann

Lukas Heumos

Mark Keller



Conclusions and acknowledgements



The Spatial Data framework:

- data standard for spatial omics
- spatial operations (aggregation, ROI selection, rasterization, ...)
- current work on robustness, scalability
 - Not an analysis library

Luca Marconato

Kevin Yamauchi

Isaac Virshup

Tim Treis

Michiel Vierdag

Josh Moore

Giovanni

Palla

Sonia Stockhaus Heidari

Marcela Toth

Quentin Blampey

Laurens Lehner

Andreas Rahul B. Benjamin Kasia Eisenbarth Shrestha Rombaut Kedziora

Lotte **Pollaris**

Vöringer

Oliver Stegle

Fabian Theis

Moritz Gerstung

Saka

Helena Crowell (CNAG)

Yvan Wolfgang Huber Saeys

Nature Methods, 2024

First authors are underlined

EMBL

Oliver Stegle Luca Marconato Sinem Saka **Wouter-Michiel Vierdag Wolfgang Huber** Harald Vöheringer Constantin Ahlmann-Eltze Mike Smith

Helmholtz Munich

Fabian Theis Giovanni Palla Isaac Virshup **Tim Treis** Sonia Stockhaus Laurens Lehner Marcella Toth **Rahul Shrestha**

DKFZ

Ilia Kats **Tobias Graf Moritz Gerstung** Elyas Heidari

Josh Moore (OME, GerBi) Kevin Yamauchi (ETH) Yvan Saevs (UGhent)

Lotte Pollaris (UGhent) **Beniamin Rombaut (UGhent)** Grzegorz Bokota (UW) Tong Li (Sanger) Christian Tischer (EMBL) Andreas S. Eisenbarth (EMBL) Omer Bavraktar (Sanger)

Ilan Gold (Helmholtz)

Nils Eilina (UZH) Will Moore (OME, UDundee) Quentin Blampey (UParis Saclay) Florian Wünnemann (UKHD) Mark Keller (HMS) 10x Genomics team CZI cellxgene team

Funded by

Chan

Zuckerberg

