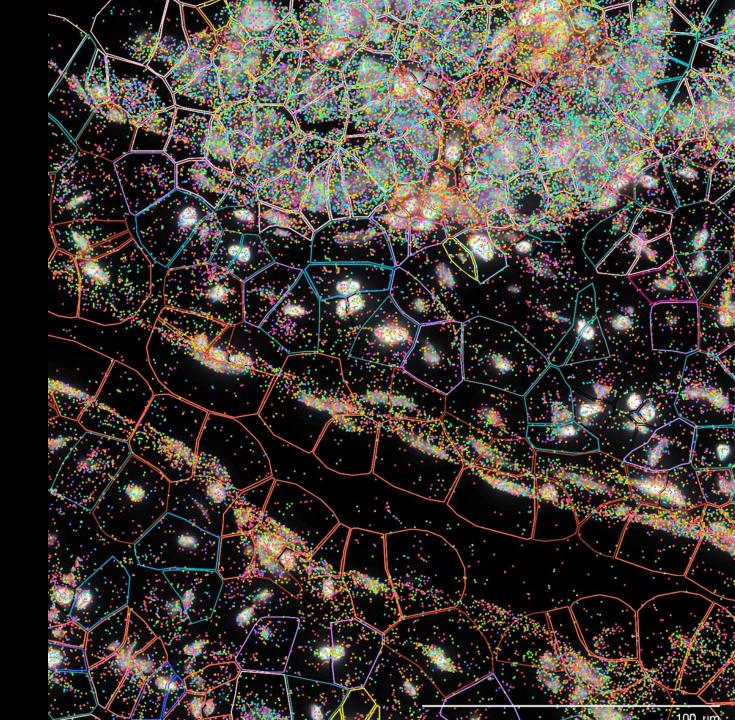
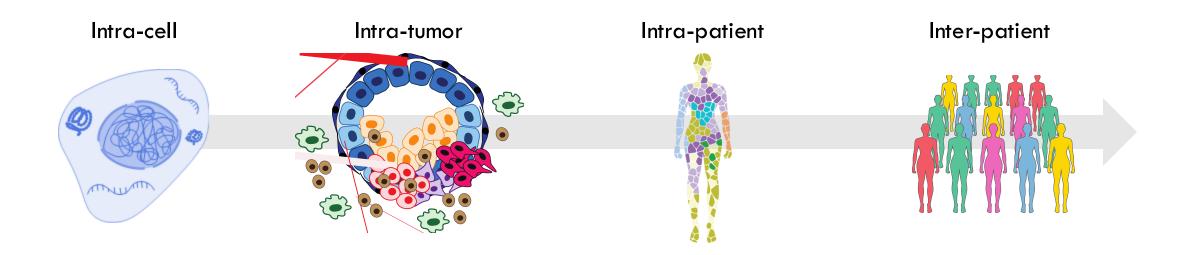
Towards multimodal and context-aware representations of the tumor microenvironment

Marianna Rapsomaniki **Assistant Professor** Biomedical Data Science Center

Lyon AI/ML sc-spatial omics workshop Oct. 16th, 2025

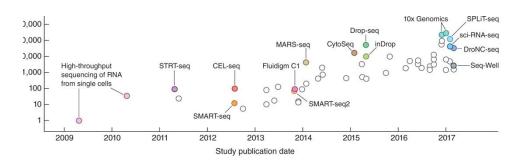


From biological stochasticity to tumor heterogeneity



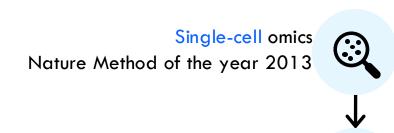
From single-cell biology...

Single-cell omics
Nature Method of the year 2013

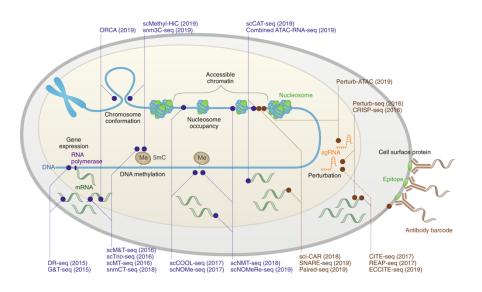


Svensson et al., Nat Protocols, (2018)

... to multi-modal single-cell biology

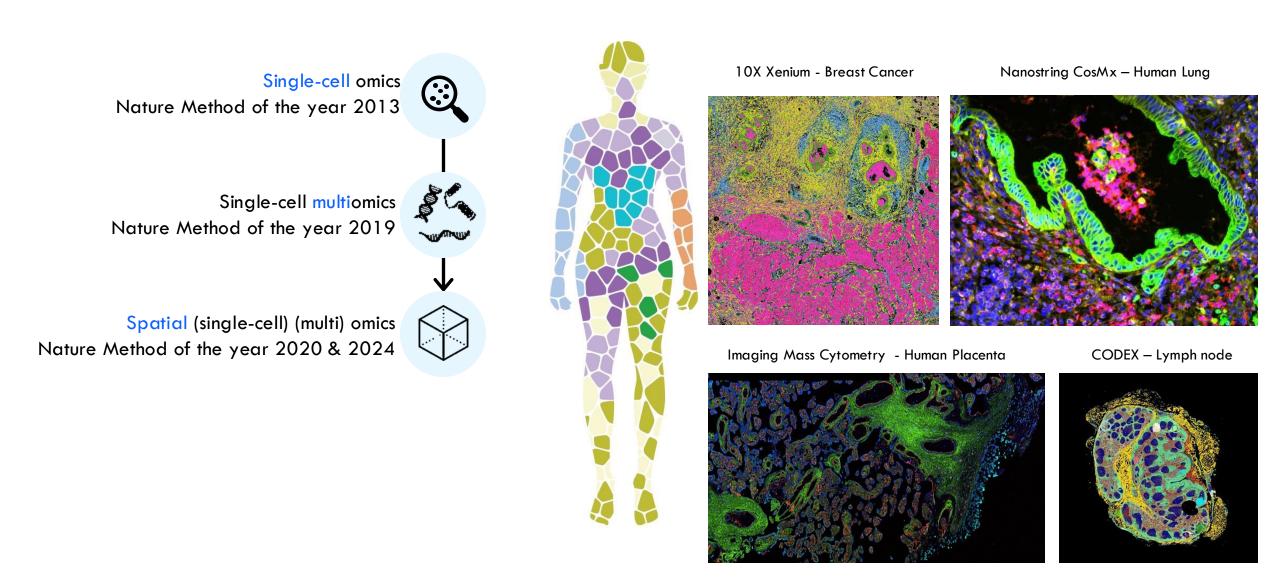


Single-cell multiomics
Nature Method of the year 2019



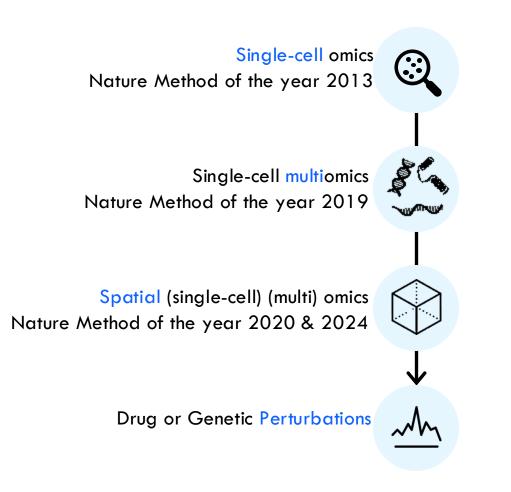
Zhu et al., Nat Methods, (2020)

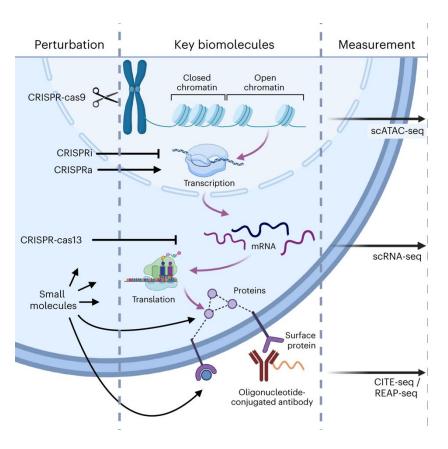
... to spatial single-cell biology



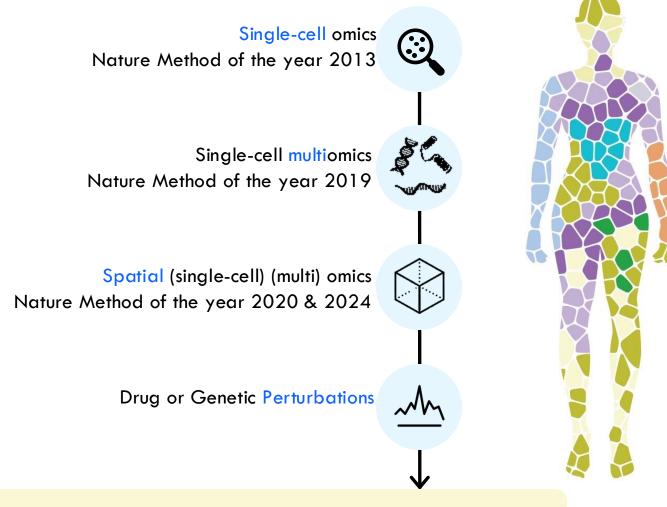
Images from https://hubmapconsortium.org, 10Xgenomics.com and Nanostring.com

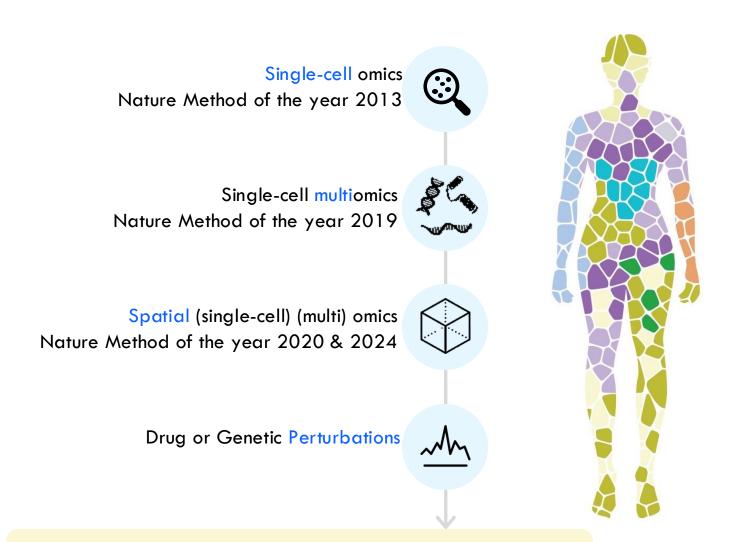
... and perturbation biology



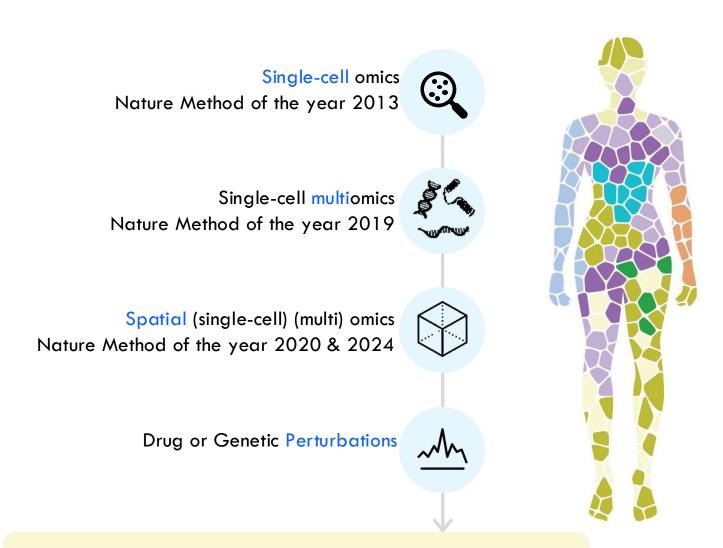


Peidl et al., Nature Methods, 2024

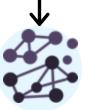




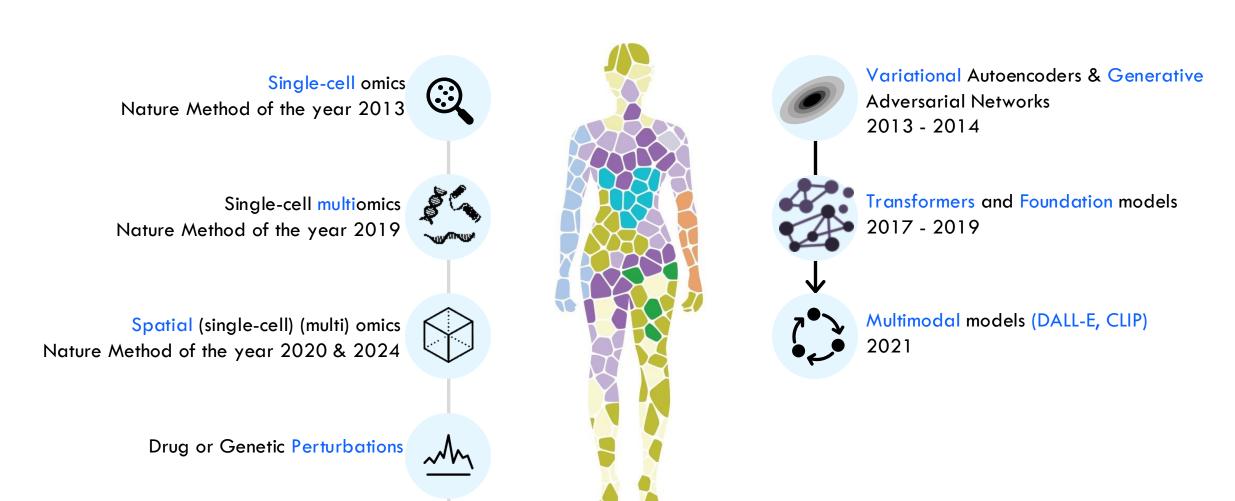
Variational Autoencoders & Generative Adversarial Networks 2013 - 2014

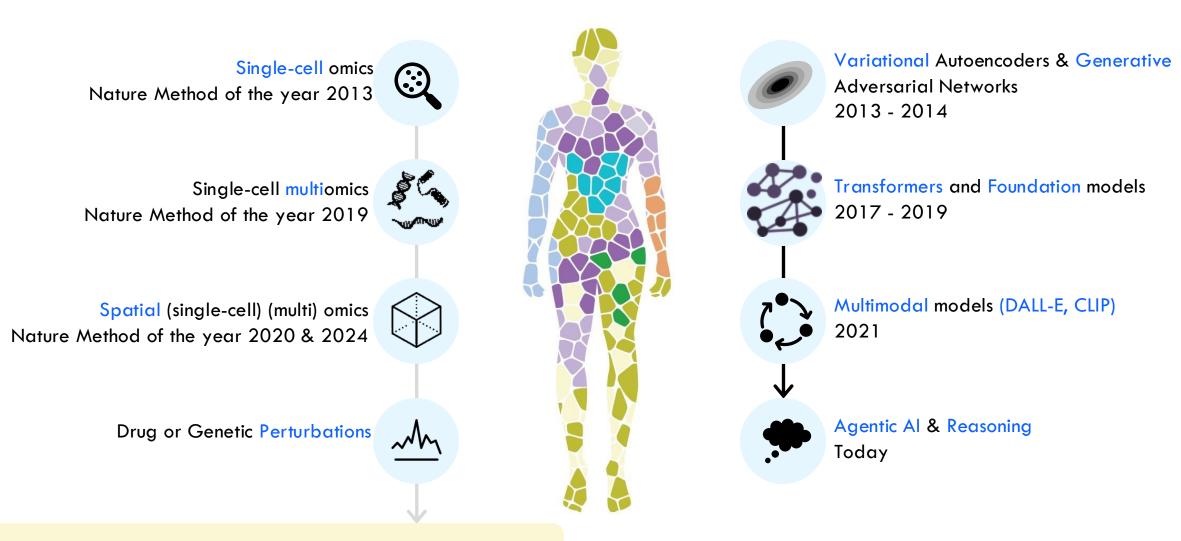


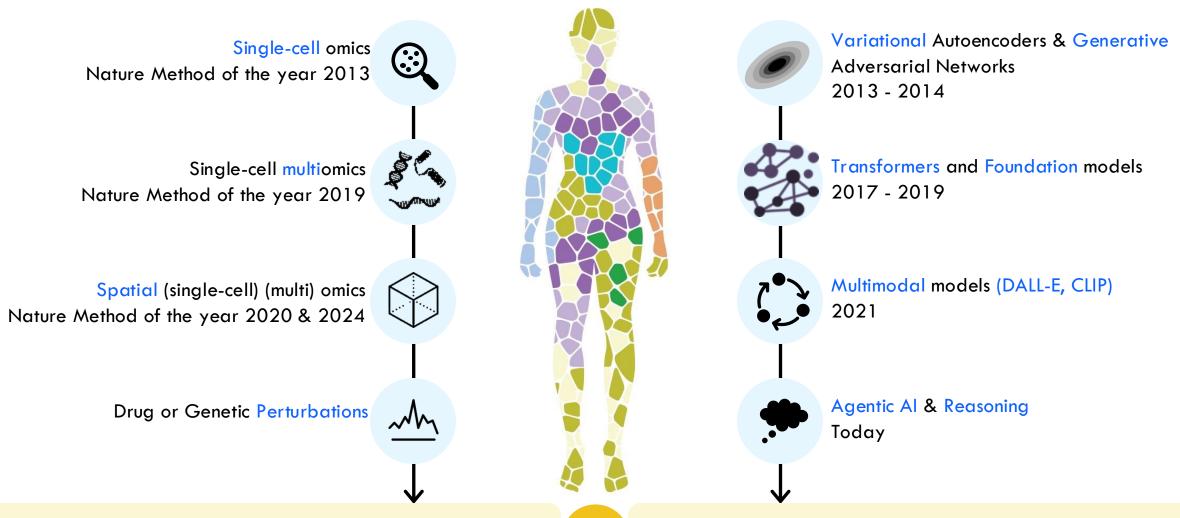
Variational Autoencoders & Generative Adversarial Networks 2013 - 2014



Transformers and Foundation models 2017 - 2019







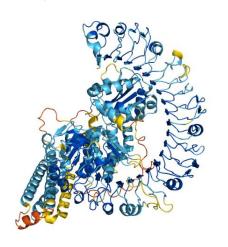
Whole tumors in health and disease, over time or under treatment down to the last single-cell, for millions of cells

New modeling paradigms able to capture complex multimodal, spatiotemporal data, interact and reason

From molecules to whole tissues

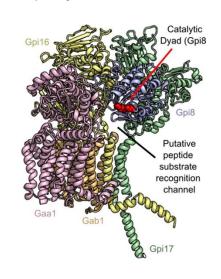
Prediction of protein structure

(Jumper et al., Nature, 2021)



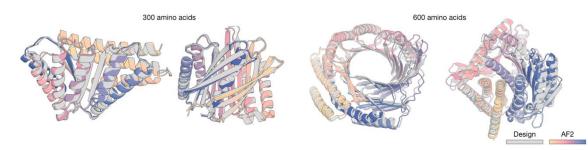
Structure of protein complexes

(Humphreys et al., Science, 2021)



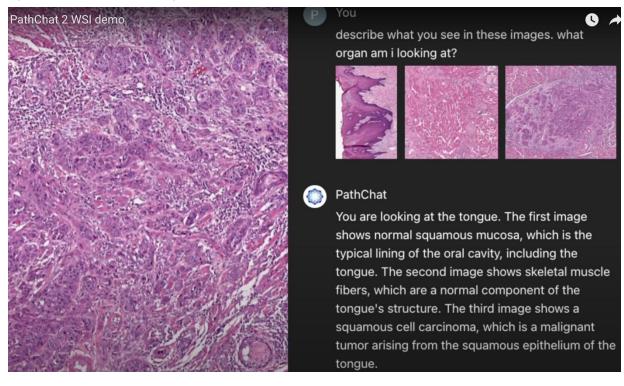
De novo protein or enzyme design

(Watson et al., Nature, 2023)



A Multimodal Generative Al Copilot for Human Pathology

(Lu *et al., Nature,* 2024)

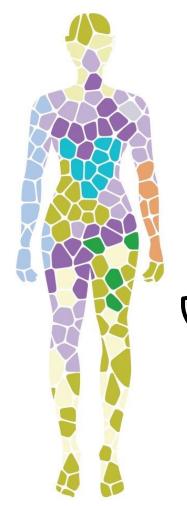


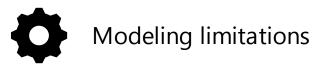
Towards a general-purpose foundation model for computational pathology (Chen *et al., Nature Medicine,* 2024)

A visual-language foundation model for computational pathology (Lu *et al., Nature Medicine,* 2024)

A reality check

Clinical data Availability Histopathology Molecular **Perturbations** Spatial omics



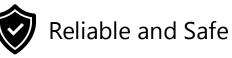


Models are not directly transferrable

Model selection/tuning

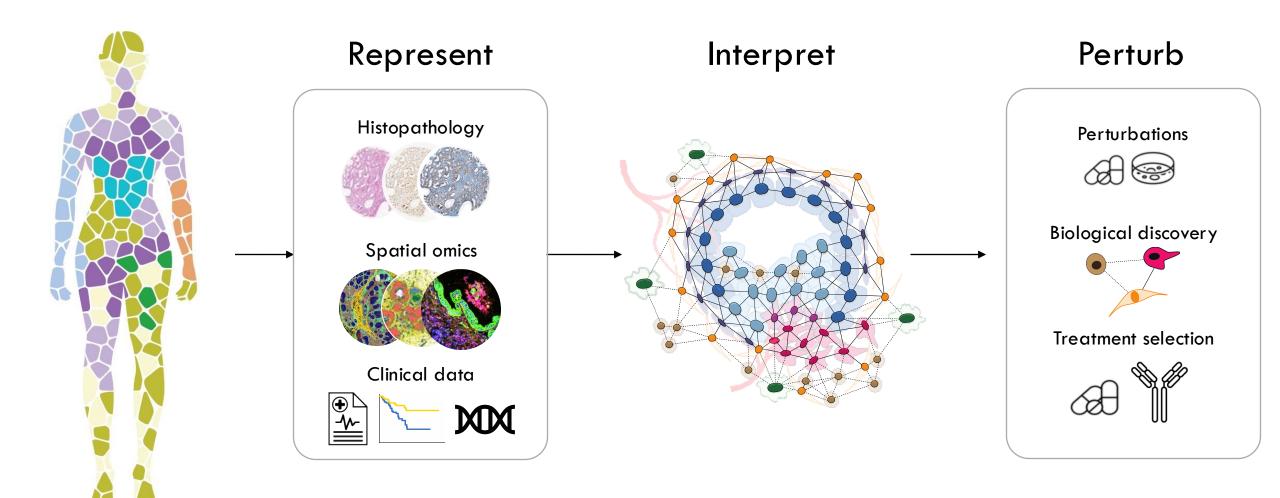
Validation and assessment

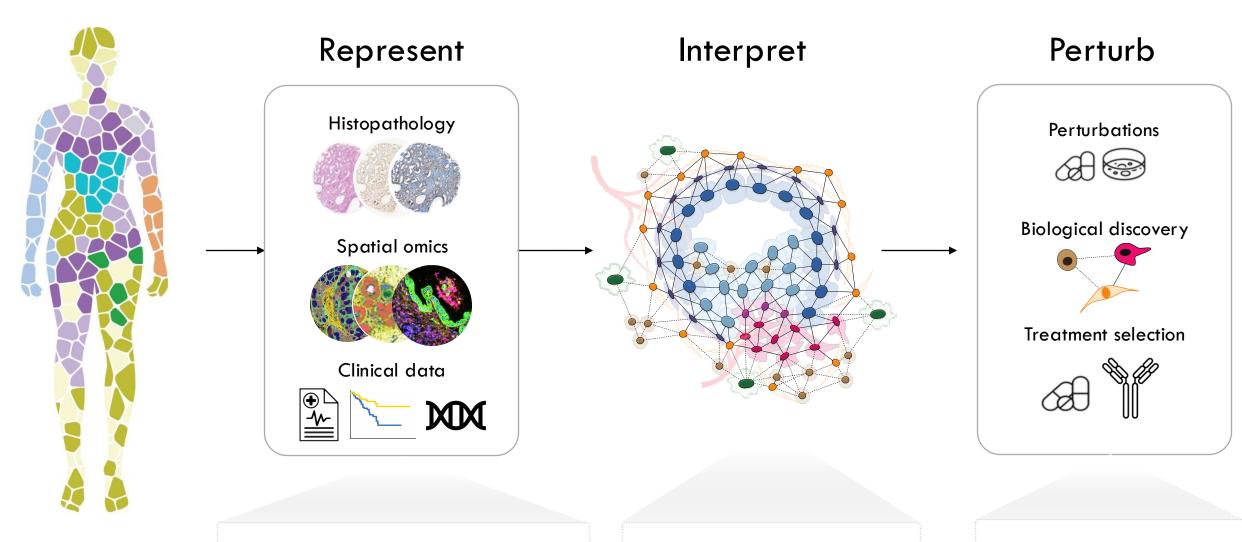
Generalizability



Privacy and Security

Noise

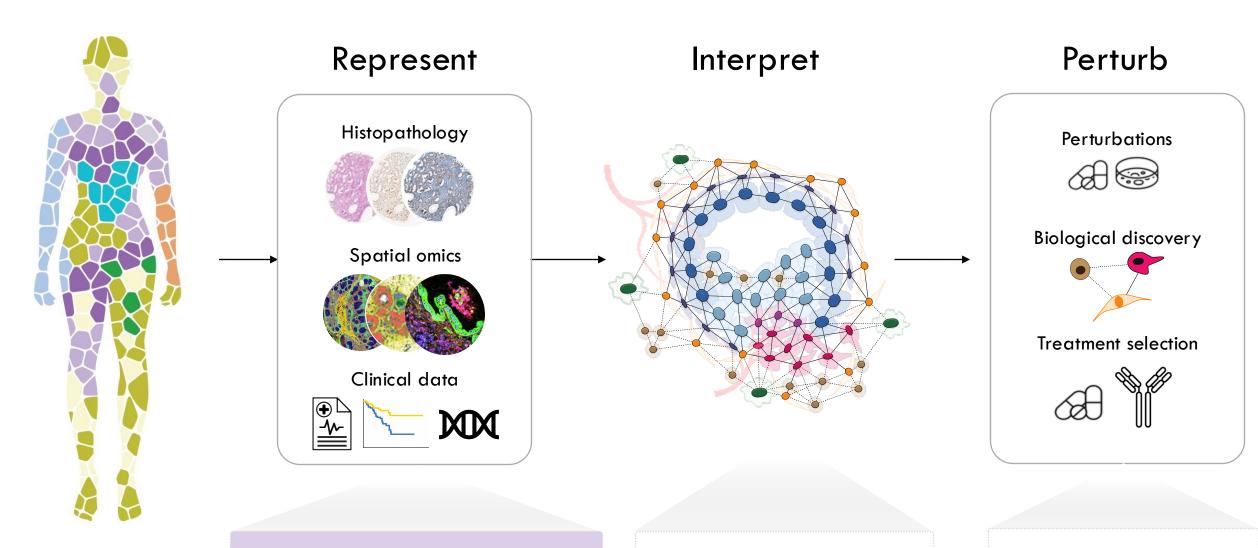




How can we learn multimodal representations from spatial omics?

How can we **interpret** these representations of the TME?

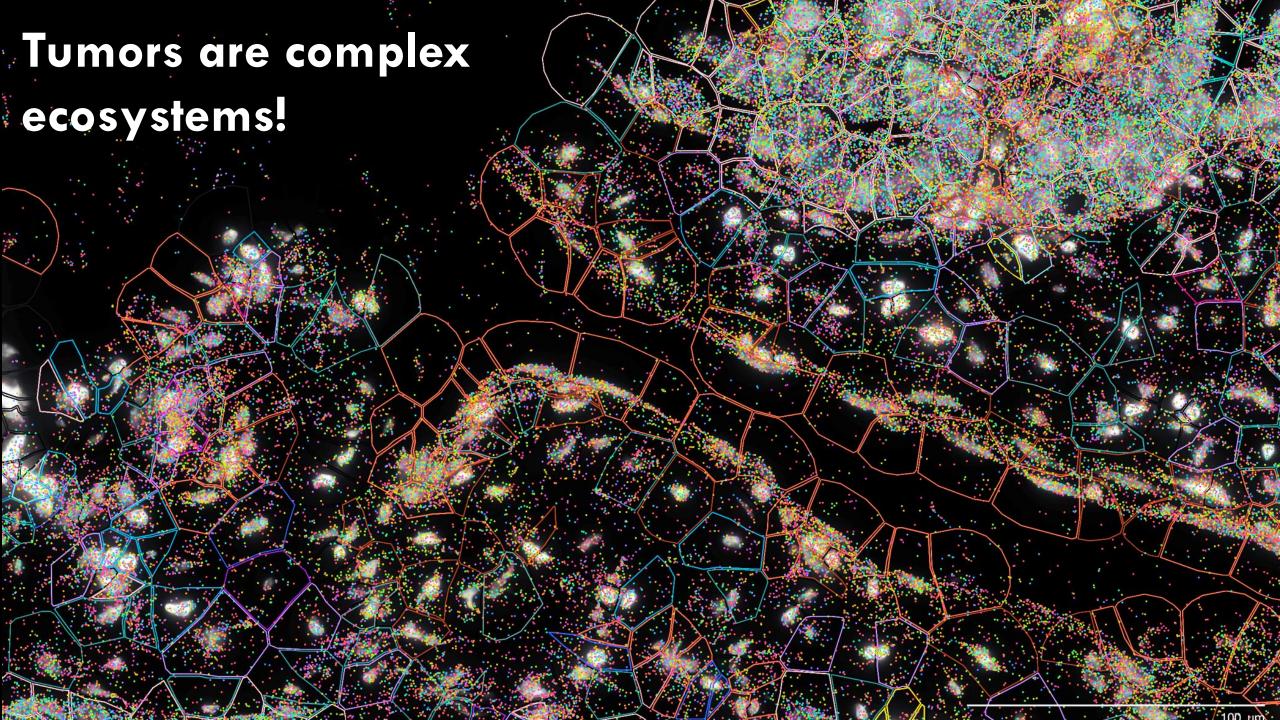
How can we predict the effects of drug perturbations?



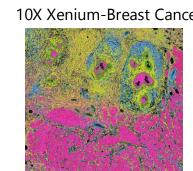
How can we learn multimodal representations from spatial omics?

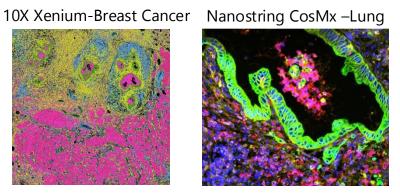
How can we **interpret** these representations of the TME?

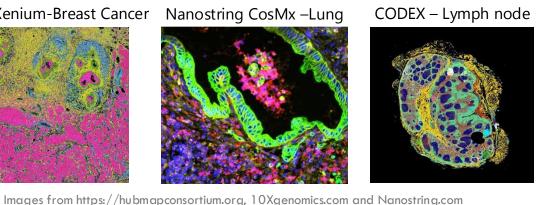
How can we predict the effects of drug perturbations?



The Bottleneck: Scale, Cost, and Complexity







Immunohistochemistry (IHC)



Spatial omics – multiplexed imaging:

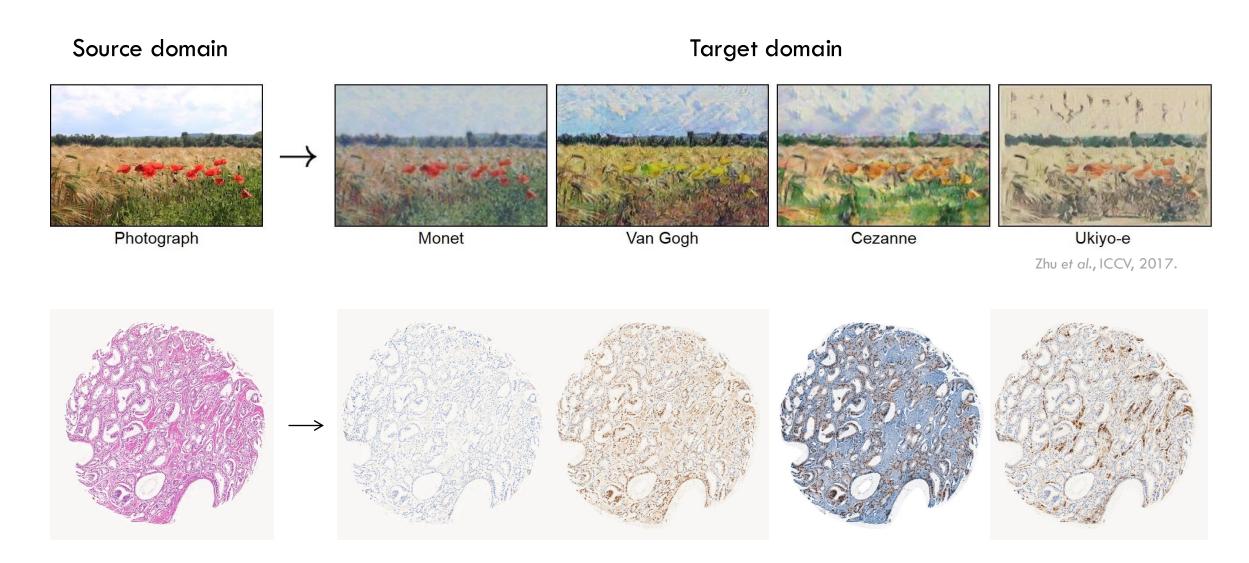
- √ Many genes/proteins simultaneously
- x High cost and long turnaround
- x Specialized equipment
- x Tissue-destructive
- x Small capture area

CD44 NKX3.1 AR **CD146** H&E missing

Traditional histopathology:

- Fast & cheap
- Standardized protocols
- x Unaligned images (no multiplexing)

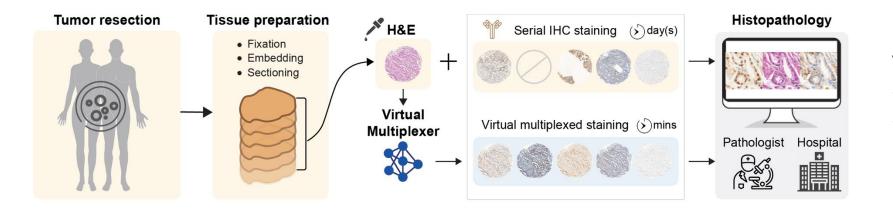
Virtual staining



Virtual Multiplexer

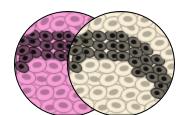
Multiplexed tumor profiling with generative Al

Pushpak Pati



Virtual staining:

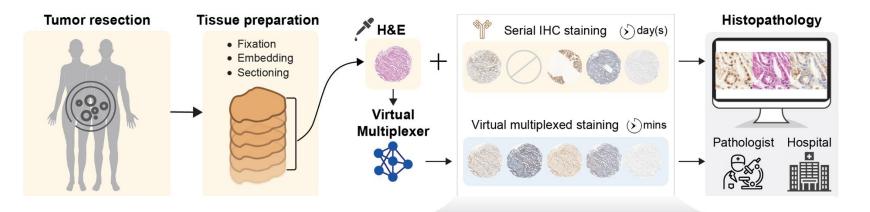
- √ Fast & cheap
- √ Standardized protocols



Virtual Multiplexer

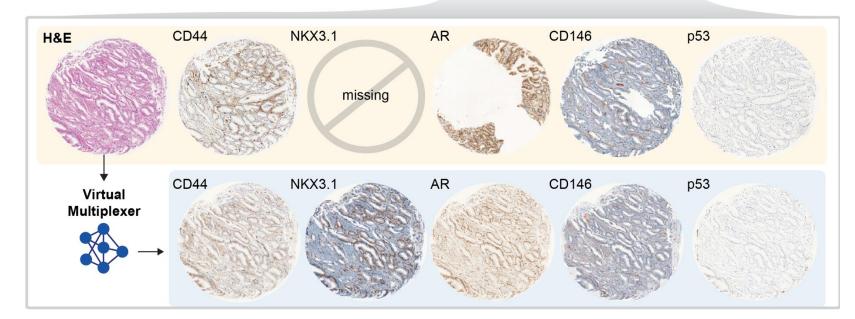
Multiplexed tumor profiling with generative Al

Pushpak Pati



Virtual staining:

- √ Fast & cheap
- √ Standardized protocols



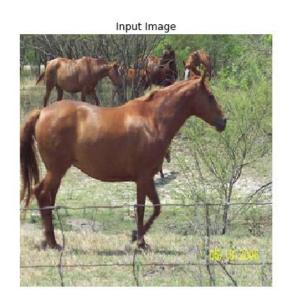
- Generates realistic virtual stains for several markers
- ✓ Unpaired data → paired,
 virtually multiplexed data

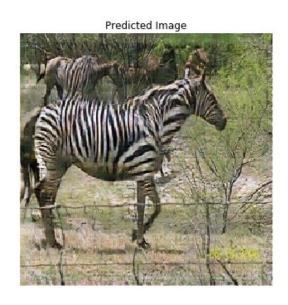
Unpaired image-to-image translation



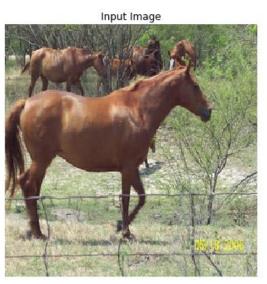
Bai et al., 2023.

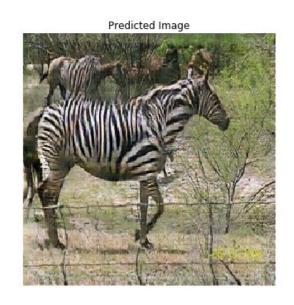
Unpaired image-to-image translation



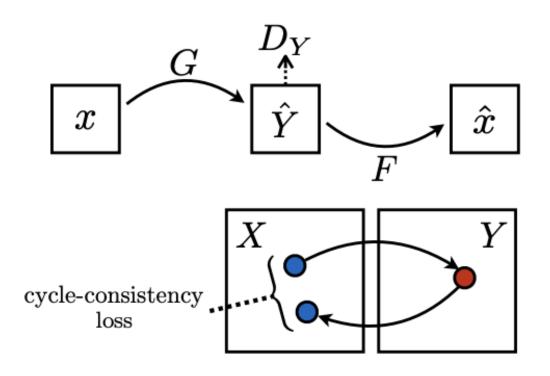


Unpaired image-to-image translation



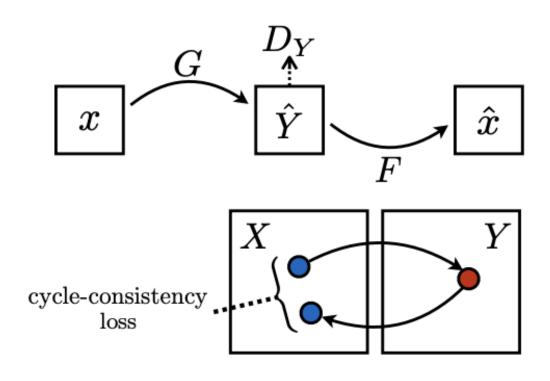


Cycle consistency loss



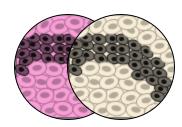
Zhu et al., ICCV 2017

Cycle consistency loss

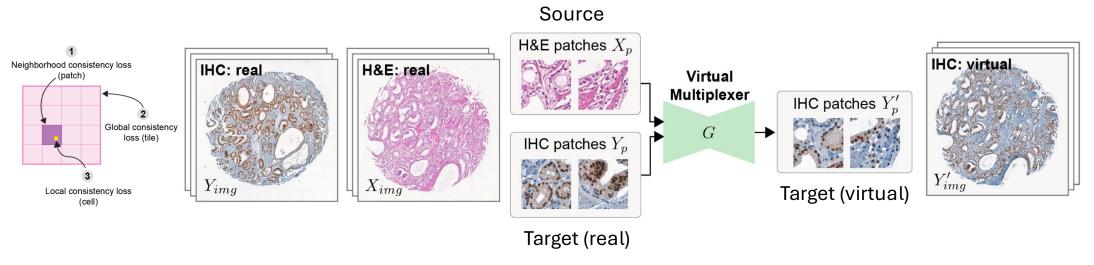


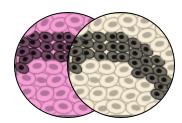
Zhu et al., ICCV 2017

https://github.com/junyanz/CycleGAN

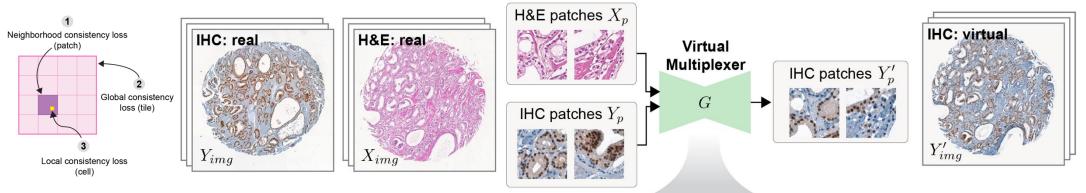


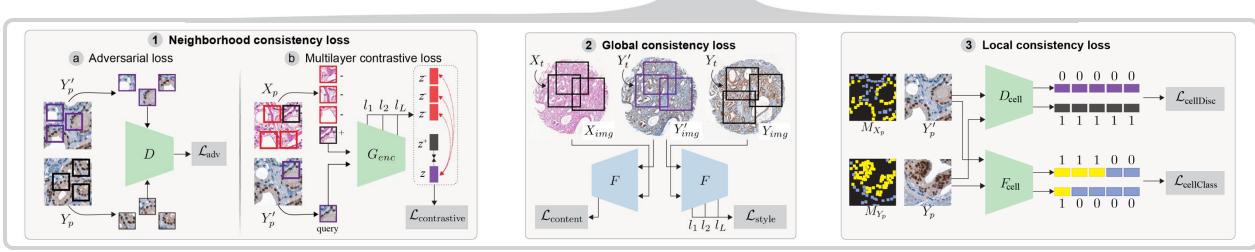
VirtualMultiplexer: model architecture



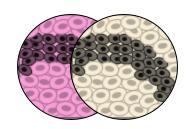


VirtualMultiplexer: model architecture

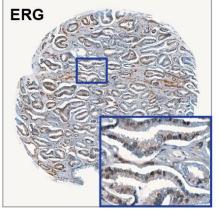


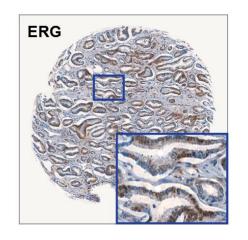


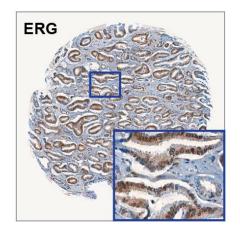
Notations: Frozen model Trainable model Real/Virtual Positive/Negative cells G: Encoder D: Patch discriminator D_{cell} : Cell discriminator F: Feature extractor F_{cell} : Cell classifier D_{cell} : Layers D_{cell} : Real H&E patches D_{cell} : Real/Virtual IHC patches D_{cell} : Images D_{cell} : Tiles

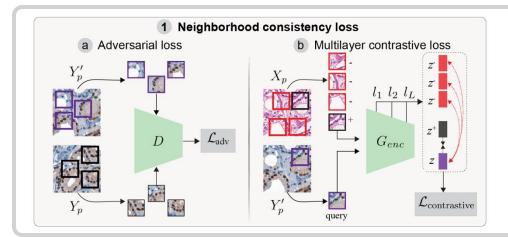


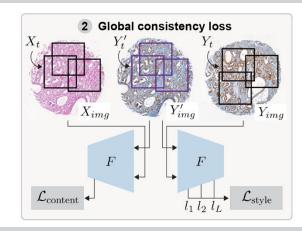
Effect of different losses

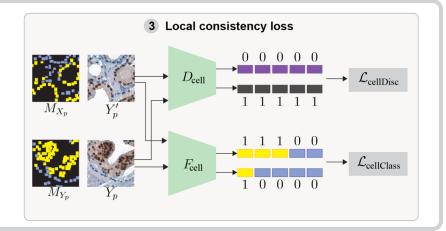


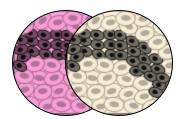






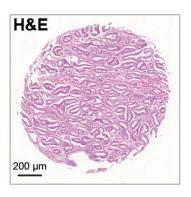






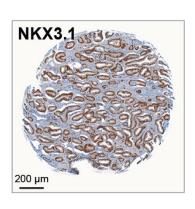
Performance assessment

Real H&E

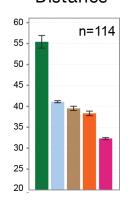


Real IHC

Virtual IHC

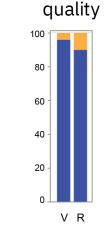


Fréchet Inception Distance

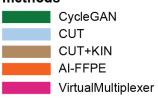


Visual Turing Staining Test quality

VV VR RV RR



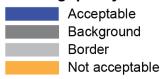
Unpaired S2S translation methods



Visual Turing test

VV: Virtual as Virtual VR: Virtual as Real RV: Real as Virtual RR: Real as Real

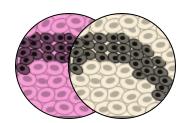
Staining quality



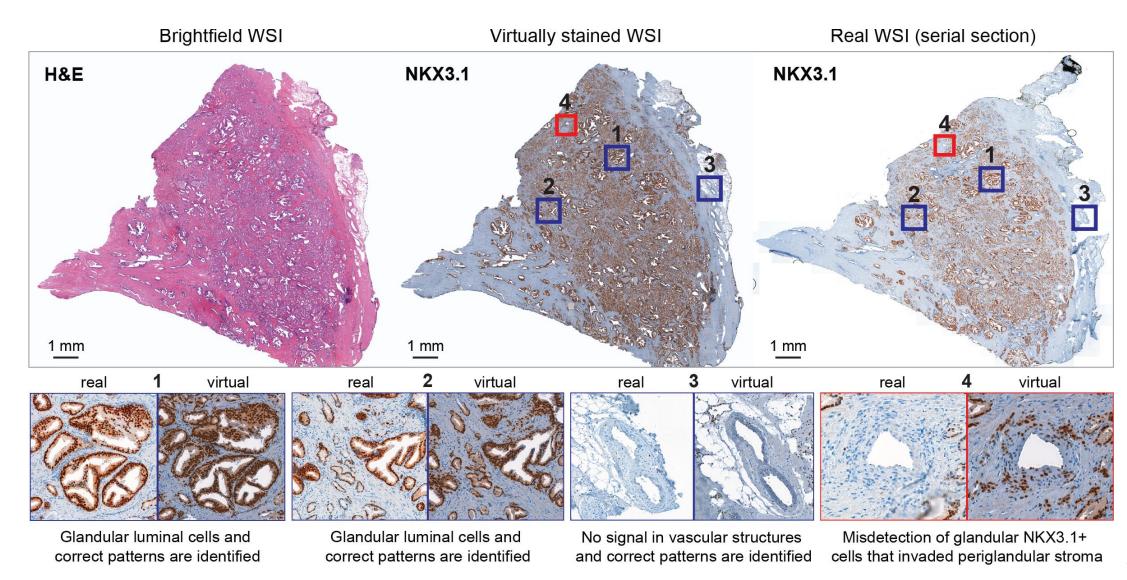
EMPaCT prostate cancer TMA*:

- 210 patients (4 cores / patient)
- 6 markers (NKX3.1, AR, CD44, CD146, p53, ERG)
- The VirtualMultiplexer **outperformed all other methods** in all 6 IHC markers in terms of FID score.
- Visual Turing test **close to random guess**: average sensitivity/ specificity of 52.1% / 54.1% across all six markers
- Virtual staining quality was on par or higher than real staining quality for 4/6 markers

Van Gogh Picasso Monet

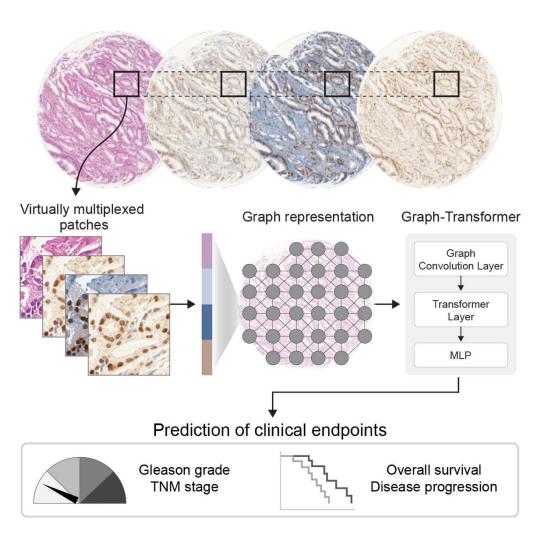


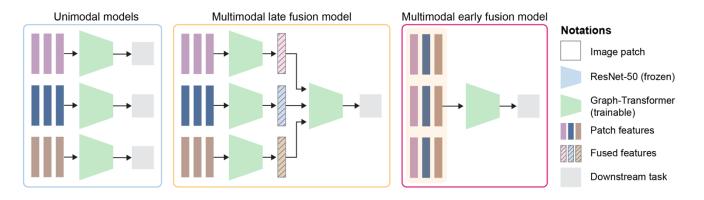
Generalization on OOD WSIs

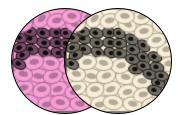




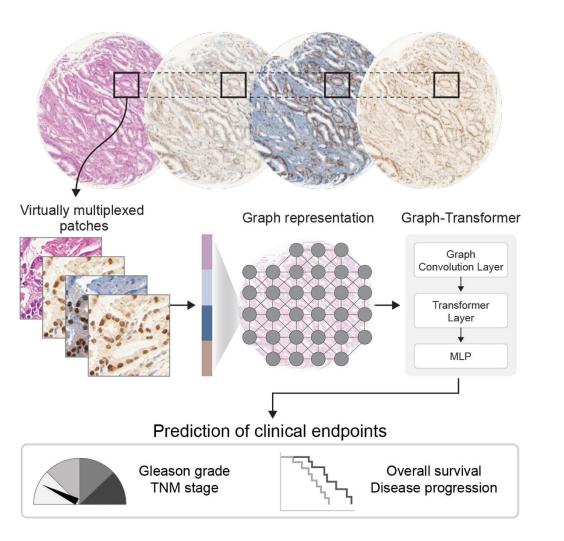
Improved clinical predictions

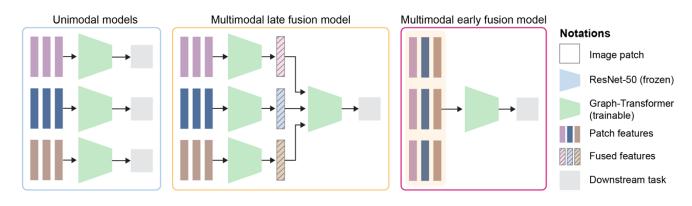




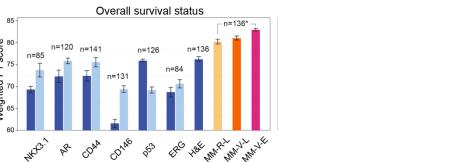


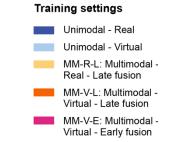
Improved clinical predictions

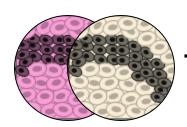




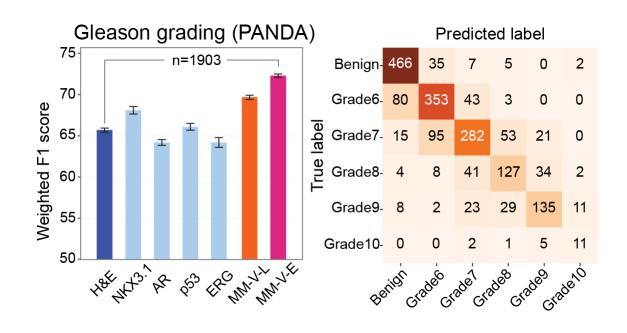
EMPaCT (results on test data)

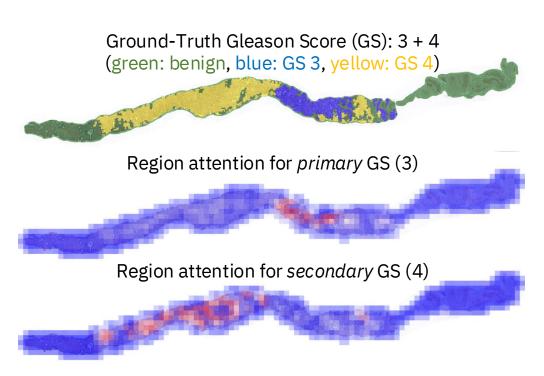


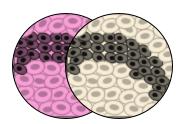




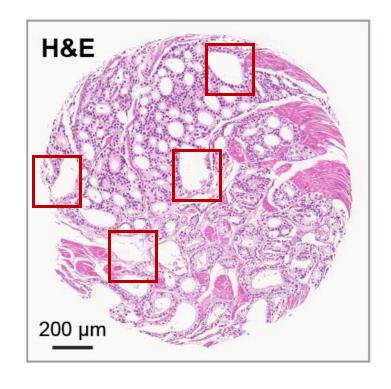
Transfer to other datasets - PANDA

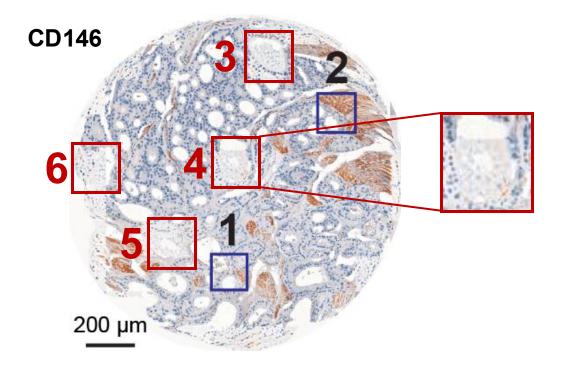


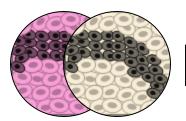




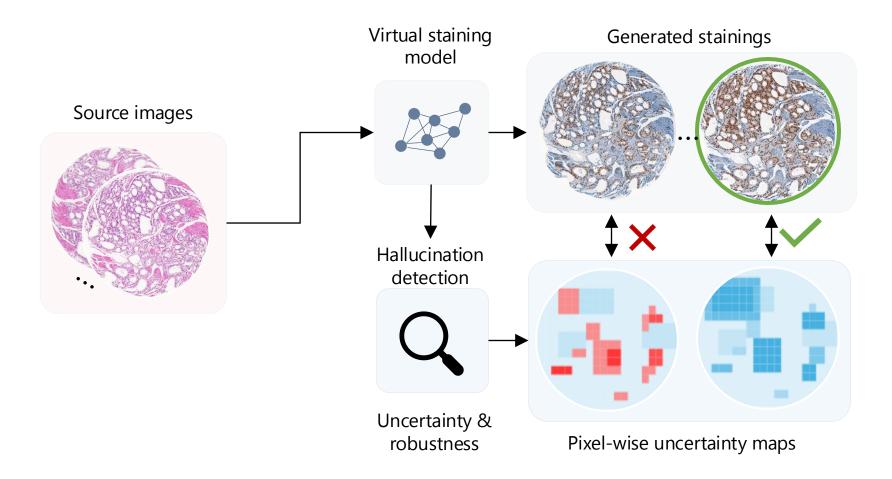
Draw me a cell?

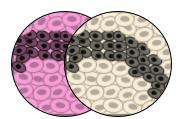






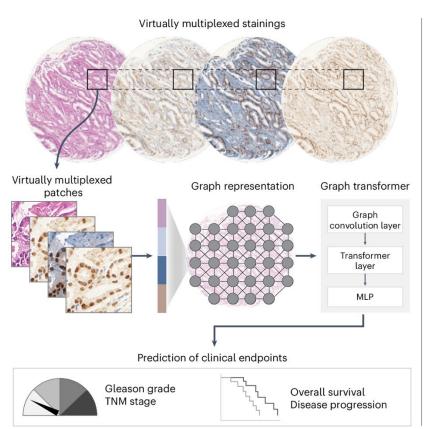
Hallucination detection

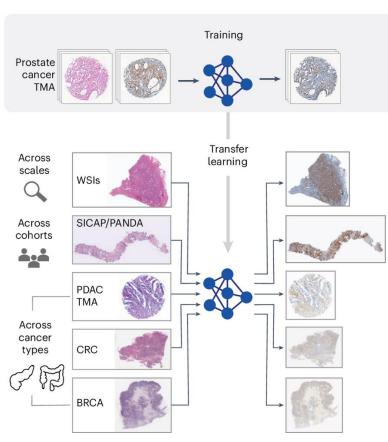




Virtual Multiplexer

Multiplexed tumor profiling with generative Al

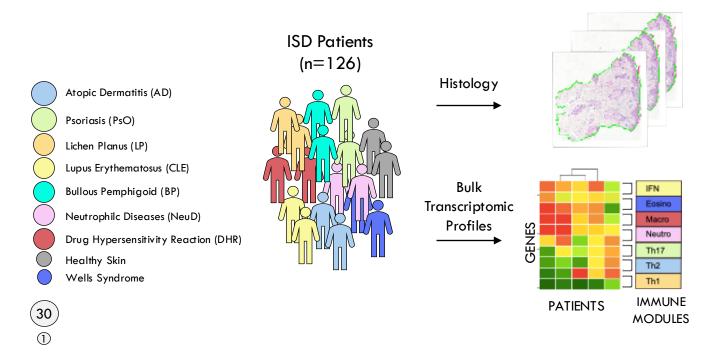




- Consistently improved the prediction of clinically relevant endpoints
- ✓ Able to generalize to unseen cohorts and cancer types

Towards **Al-assisted histopathology**:

- Data inpainting, sample imputation, harmonizing datasets, experimental design
- Translation to cutting-edge spatial omics technologies (e.g., spatial transcriptomics)



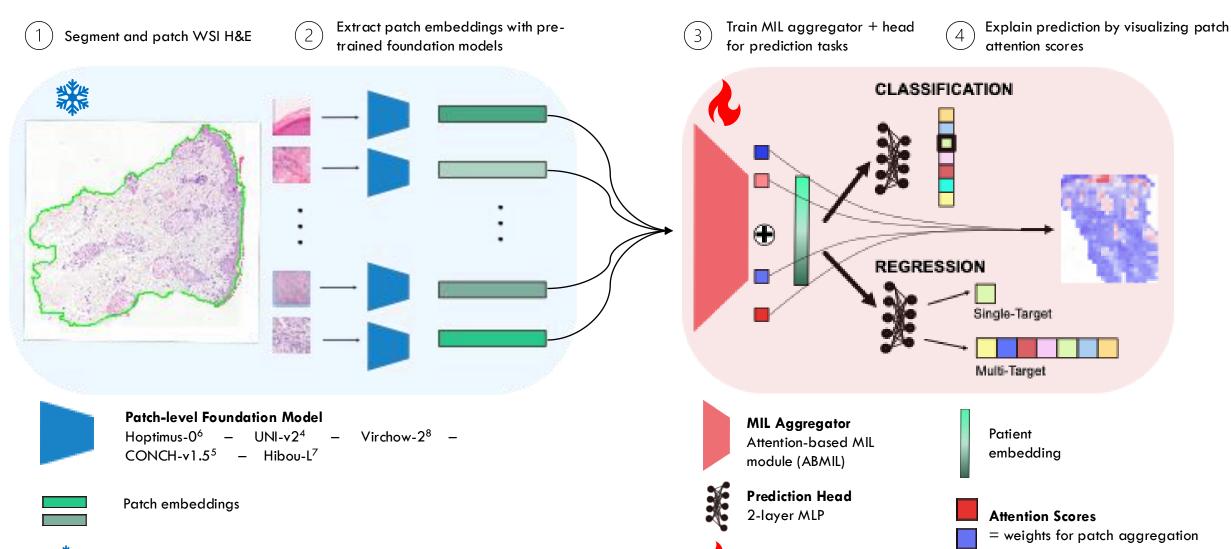
- Can we extract H&E representations that capture tissue heterogeneity?
- Can we use them to train Al models to predict molecular characteristics or diagnostic labels?
- How interpretable and clinically understandable are the representations learned by these models?

Melissa Ensmenger

Collaboration with Prof. Raphael Gottardo (BDSC) and Prof. Michel Gilliet (Department of Dermatology, CHUV)

Team members: Antoine Girardin, Jeremy Di Domizio, Hugo Cometto

Frozen weights

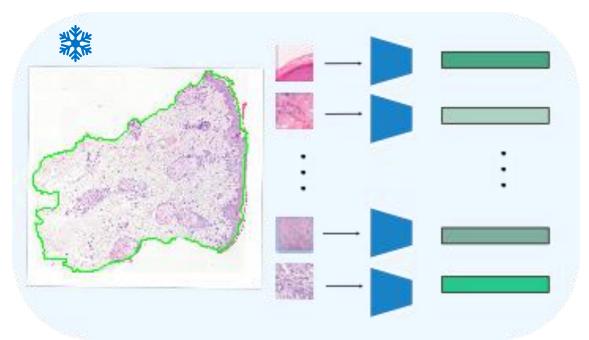


Trainable parameters

41

1 Segment and patch WSI H&E

Extract patch embeddings with pretrained foundation models



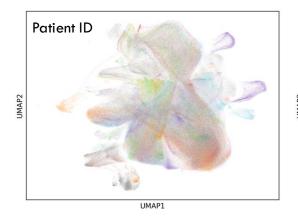
Patch-level Foundation Model

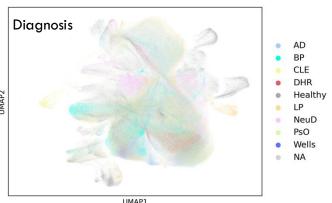
Hoptimus- 0^6 – UNI- $v2^4$ – Virchow- 2^8 – CONCH- $v1.5^5$ – Hibou- L^7

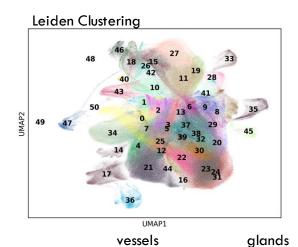
Patch embeddings

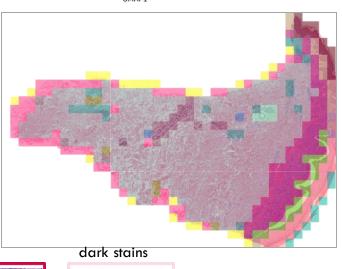
Frozen weights

FM representations capture different layers of the skin as well as specialized morphological structures and technical artifacts.



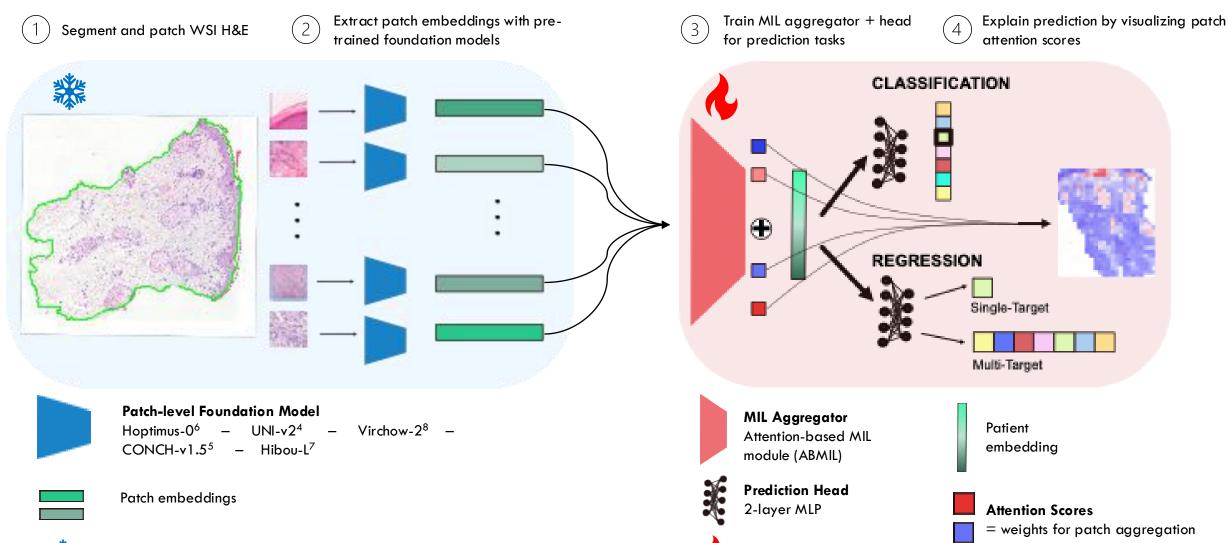






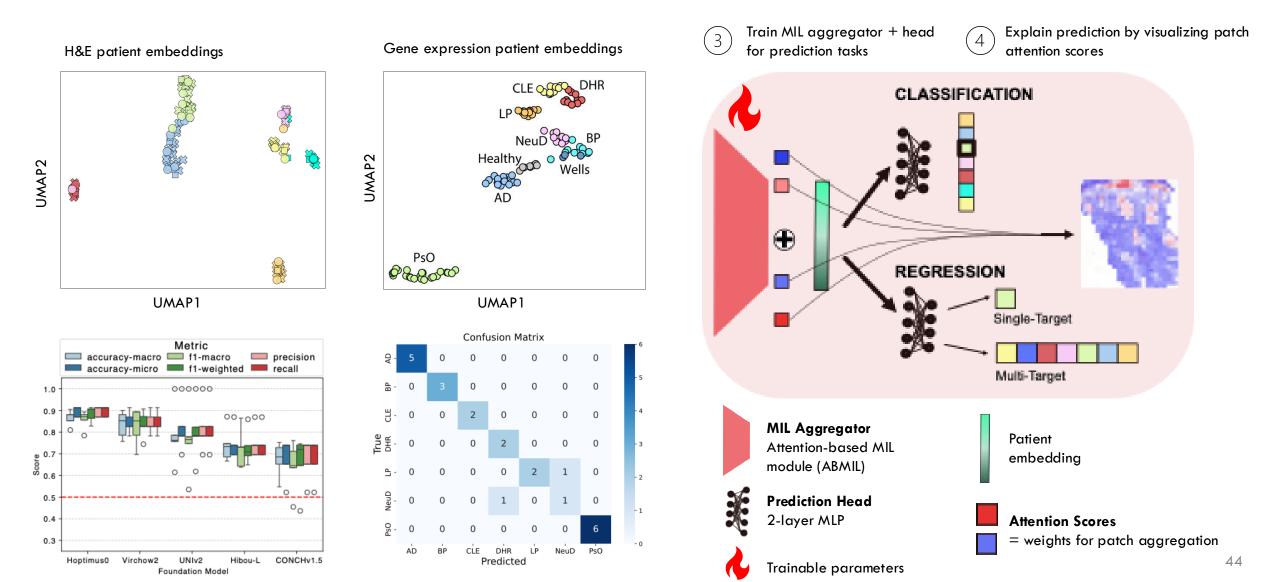
42

Frozen weights



Trainable parameters

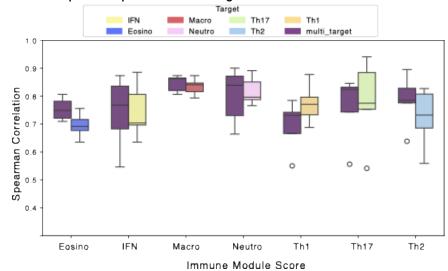
43



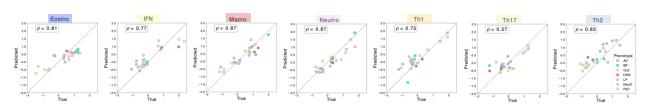
Our framework can predict joint immune pathway activity from tissue morphology (H&E)...

Comparison of **5-fold cross-validation Spearman correlations** for pathway activity prediction between **multi-target** and **single-target models***

*trained on HoptimusO patch embeddings



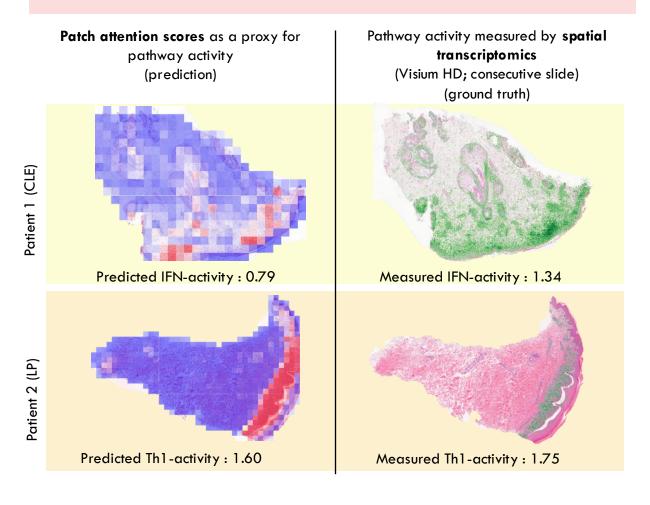
Predicted (y-axis) vs. **reference** (x-axis) pathway activity for the **multi-objective model** (example test set of specific split)

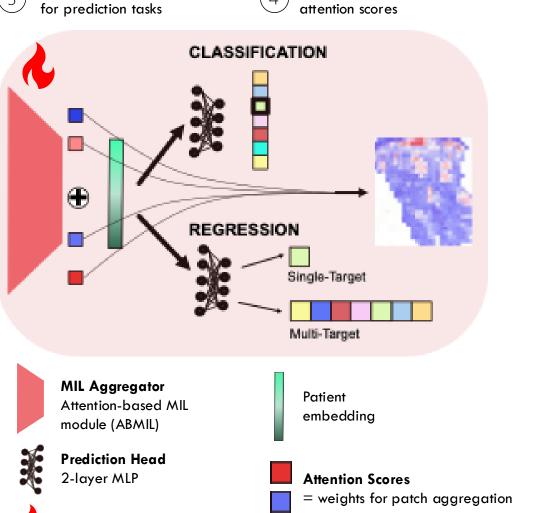


Train MIL aggregator + head Explain prediction by visualizing patch for prediction tasks attention scores CLASSIFICATION REGRESSION Single-Target Multi-Target **MIL Aggregator Patient** Attention-based MIL embedding module (ABMIL) **Prediction Head** 2-layer MLP Attention Scores weights for patch aggregation

Trainable parameters

... and map it back to specific tissue regions using attention scores.

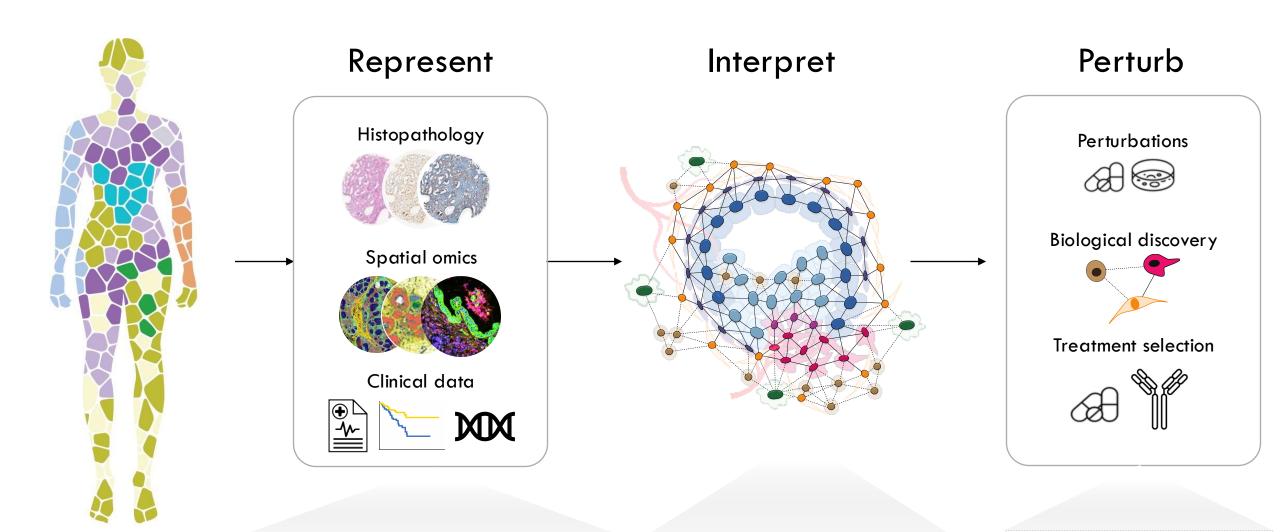




Explain prediction by visualizing patch

Train MIL aggregator + head

Trainable parameters

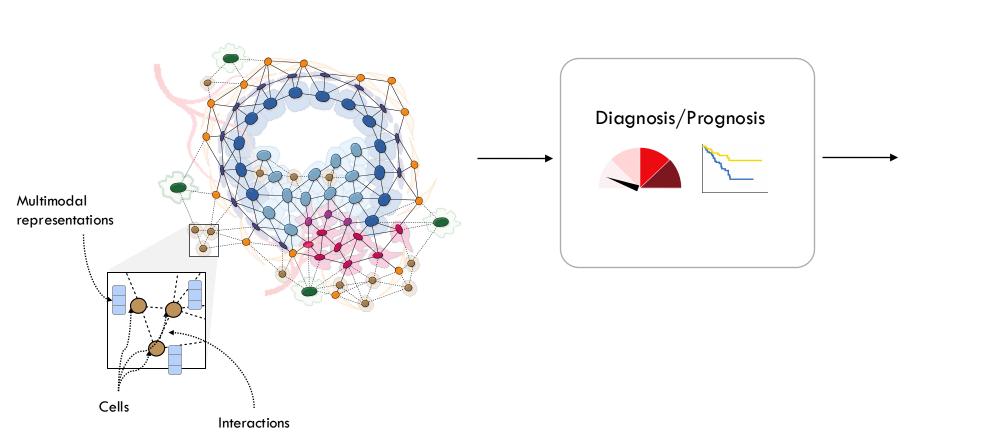


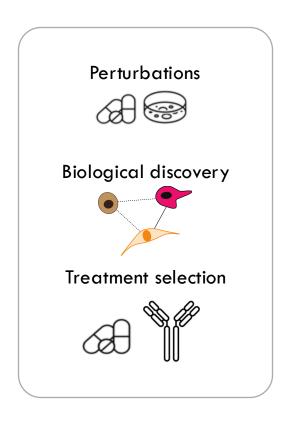
How can we learn multimodal representations from spatial omics?

How can we **interpret** these representations of the TME?

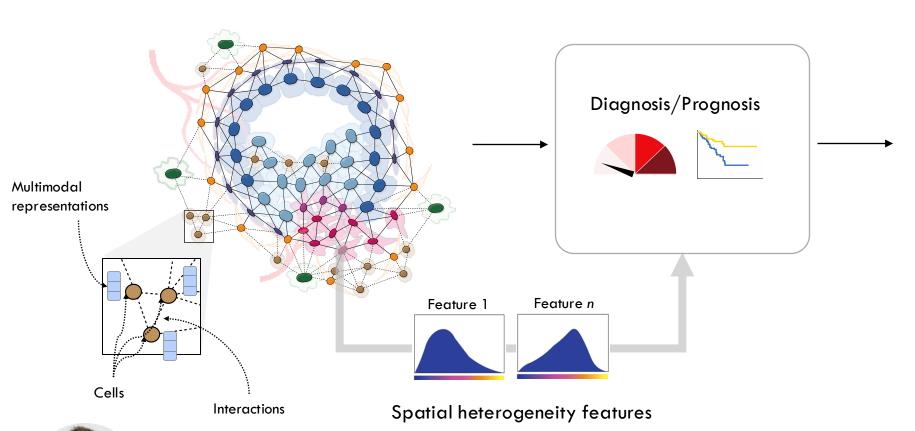
How can we predict the effects of drug perturbations?

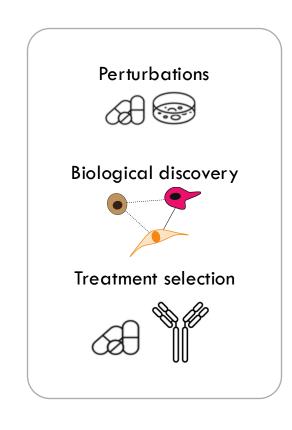
Modeling the TME with Graph Representation Learning





Modeling the TME with Graph Representation Learning



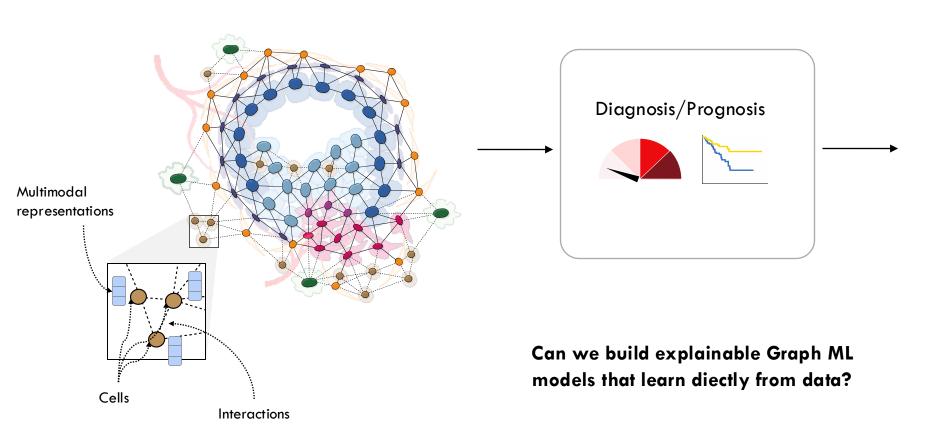


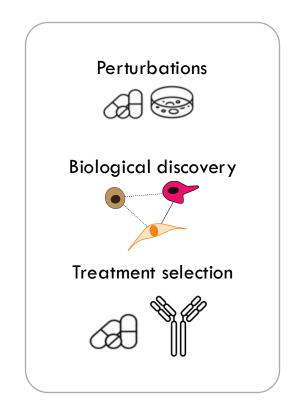
Adriano Martinelli

Martinelli and Rapsomaniki, Bioinformatics (2022)

https://github.com/AI4SCR/ATHENA

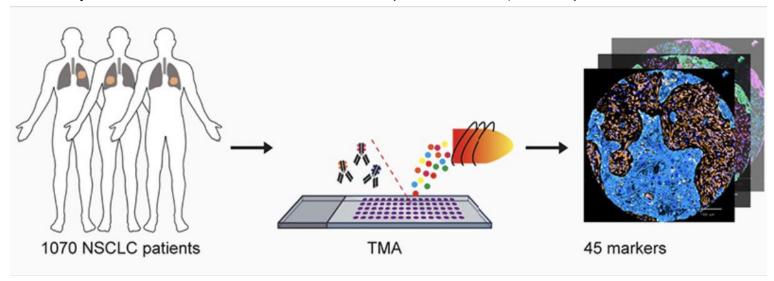
Modeling the TME with Graph Representation Learning





Post-hoc explainers are not consistent

Publicly available NSCLC IMC dataset (Cords et al., 2024).



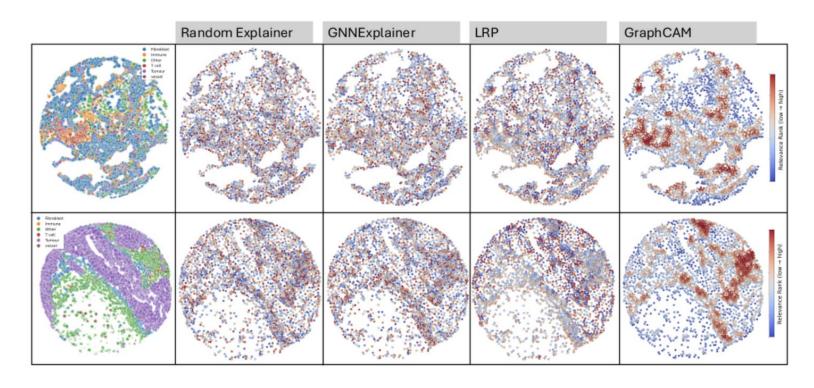
58% LUAD, 36% LUSC

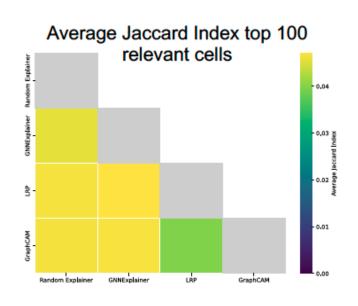
Predict LUAD vs. LUSC

	metric	
Model	F1 weighted	F1 macro
MLP	0.641 ± 0.005	0.635 ± 0.013
GCN	0.715 ± 0.007	0.704 ± 0.004
GAT	$\boldsymbol{0.760 \pm 0.016}$	$\boldsymbol{0.752 \pm 0.015}$
GIN	0.723 ± 0.013	0.710 ± 0.029

Theo Maffei

Post-hoc explainers are not consistent

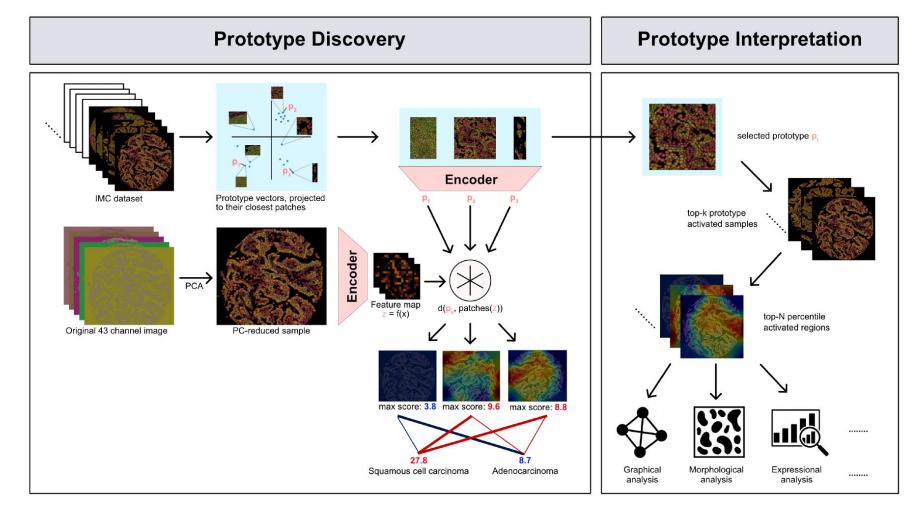




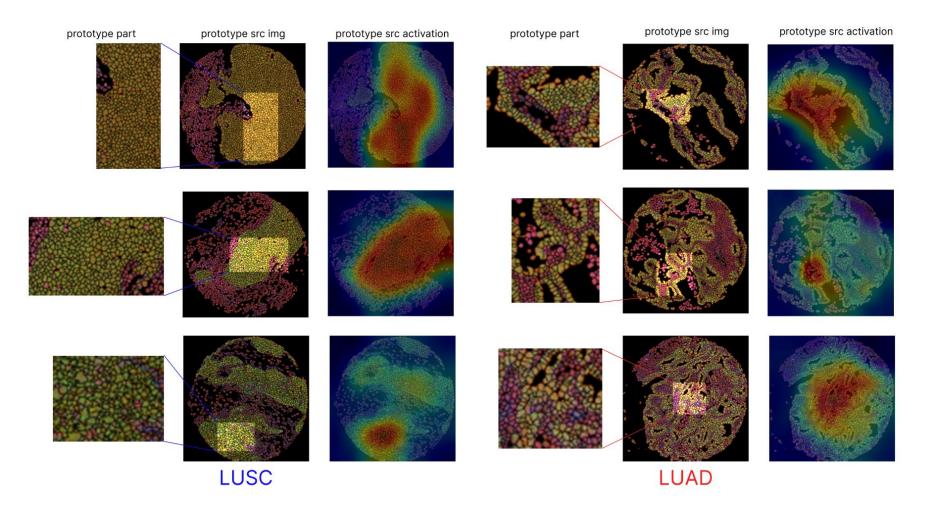
Although GNN-based models achieves an F1-weighted score of 0.76, post hoc explainers exhibit limited agreement

Theo Maffei

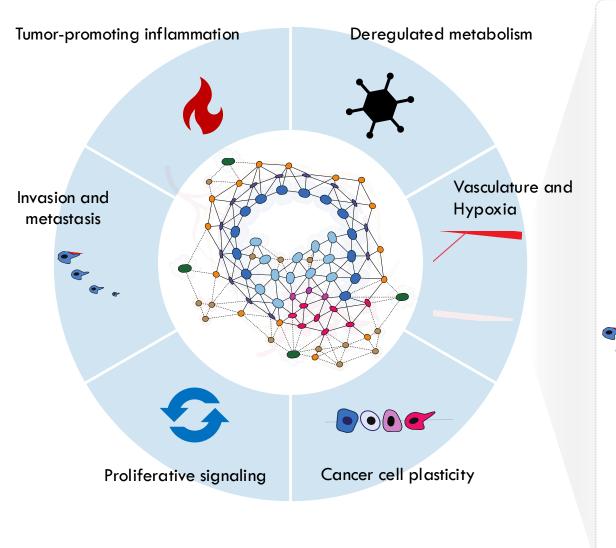
ProteinPNet: Prototypical Part Networks for Concept Learning in Spatial Proteomics

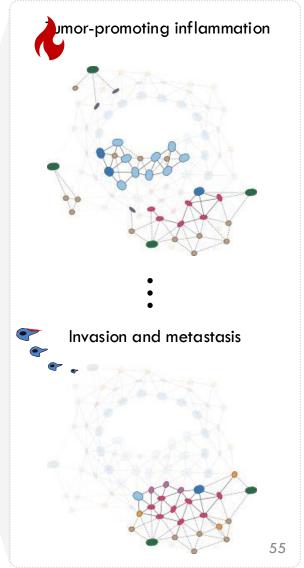


ProteinPNet: Prototypical Part Networks for Concept Learning in Spatial Proteomics

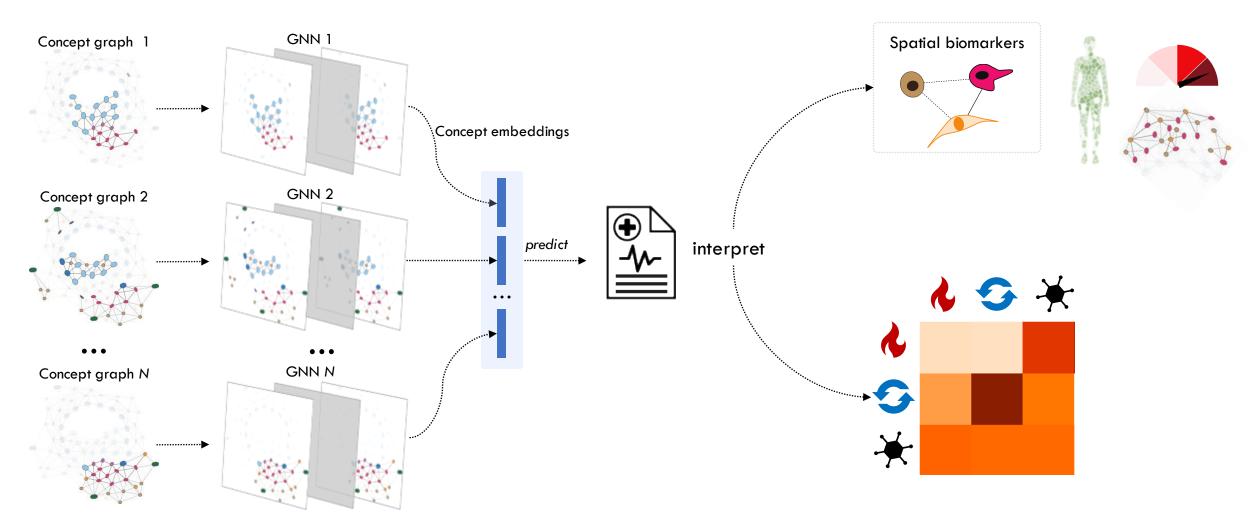


From TME complexity to interpretable concepts

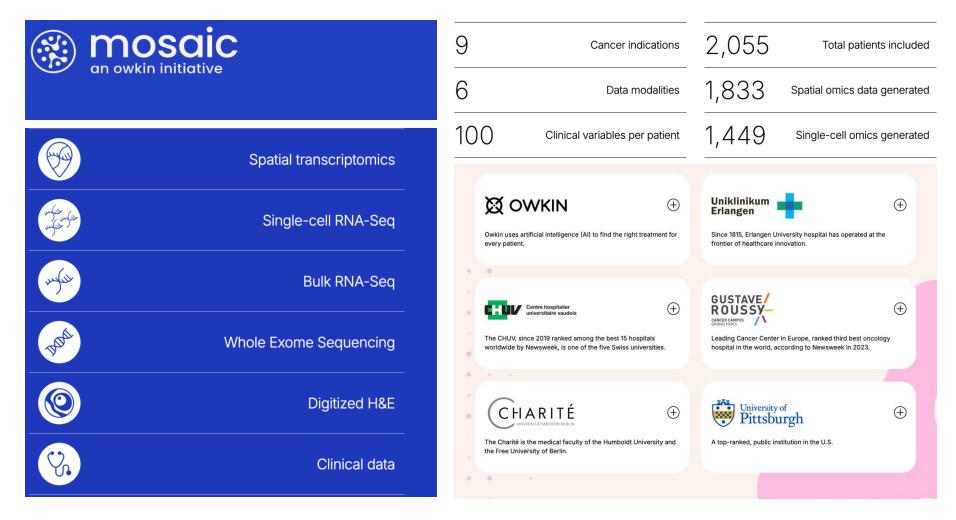




From TME complexity to interpretable concepts

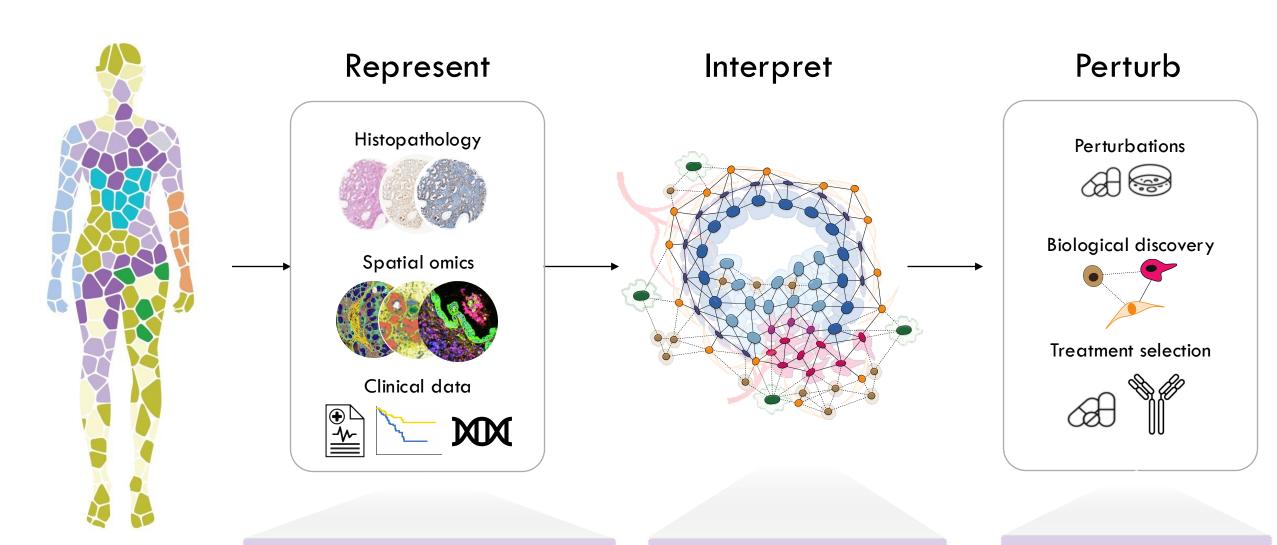


MOSAIC: the world's largest spatial multiomic dataset in oncology



Collaboration with Prof. Raphael Gottardo (BDSC), Dr. Krisztian Homicsko (Dept. of Oncology, CHUV), Prof. Laurence de Laval (Dept. Pathology, CHUV)

Team members: Sari Issa, Theo Maffei, Spencer Watson, Jonathan Bac



How can we learn multimodal representations from spatial omics?

How can we **interpret** these representations of the TME?

How can we predict the effects of drug perturbations?

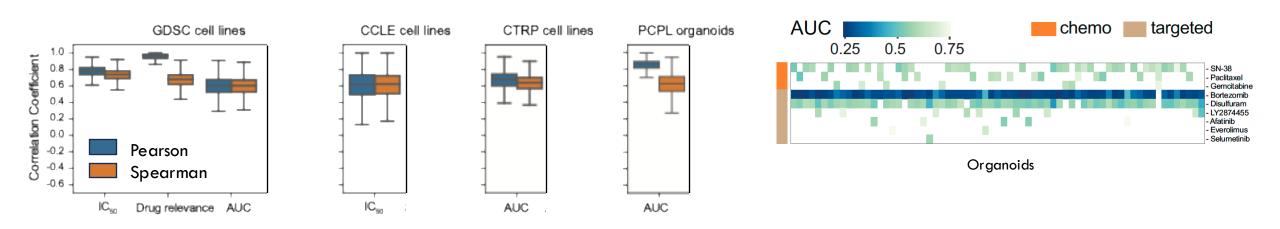
High correlations of drug response metrics between cell lines of distinct origins



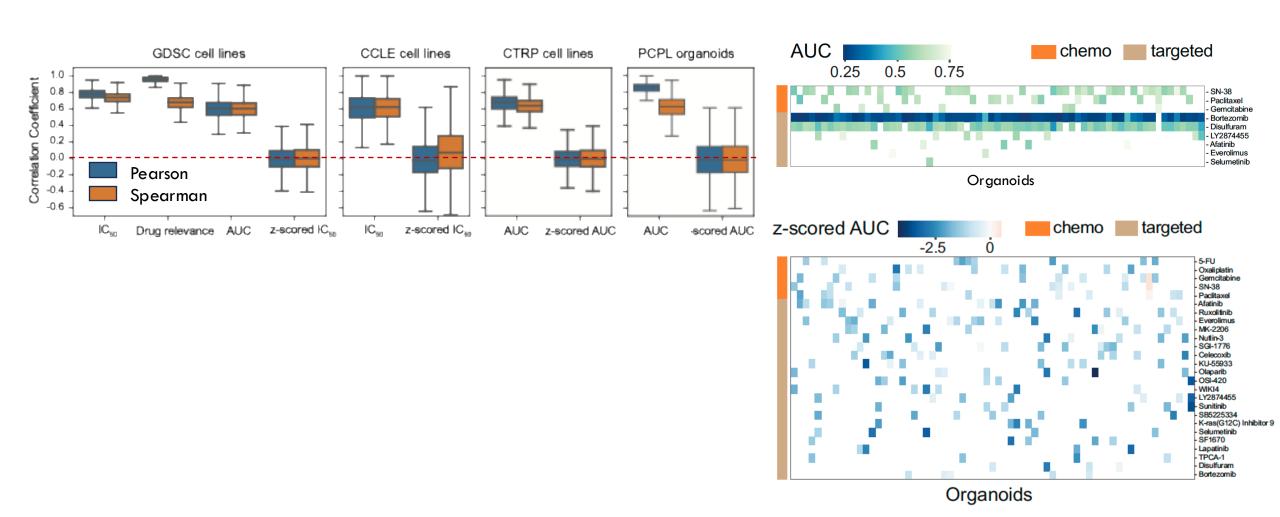
Katia Ovchinnikova Marianna Kruithof-de Julio

IBM **Research** Zurich
Jannis Born

Drug response is heavily affected by the inherent **potency** or **toxicity** of each drug **independently** of the cell line/organoid it was tested on

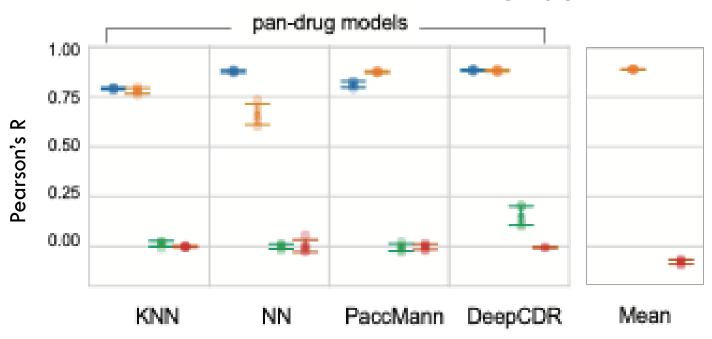


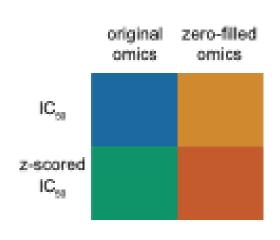
Z-score normalization for all values separately for each drug removes the drug-specific bias



Al models are heavily affected by these issues!

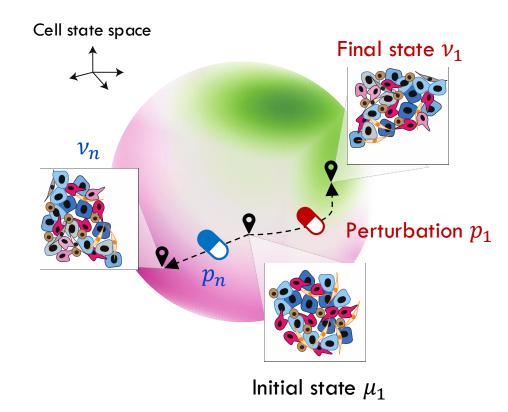
Train and tested on the GDSC dataset





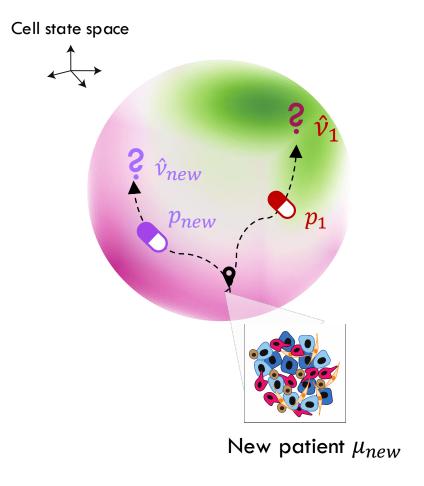
Predicting perturbation effects at the single-cell level

- Challenge: scRNA-seq measurements are destructive, no direct pairing between cells
- o **Input**: a dataset of before & after cell states coupled to perturbations $(p_i(\mu_i, \nu_i))$



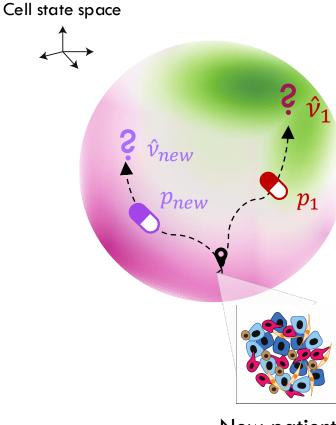
Predicting perturbation effects at the single-cell level

- Challenge: scRNA-seq measurements are destructive, no direct pairing between cells
- o **Input**: a dataset of before & after cell states coupled to perturbations $(p_i(\mu_i, \nu_i))$
- \circ The problem: Given an unseen initial state μ_{new} , predict the final state $\widehat{\nu}_1$ after known perturbation p_1 or predict the final state $\widehat{\nu}_{new}$ after unseen perturbation p_{new}



Predicting perturbation effects at the single-cell level

 \circ **CMonge***: Use conditional Optimal Transport (OT) to learn transportation maps M_k conditioned on covariates (e.g., dosage, drug, or cell type)



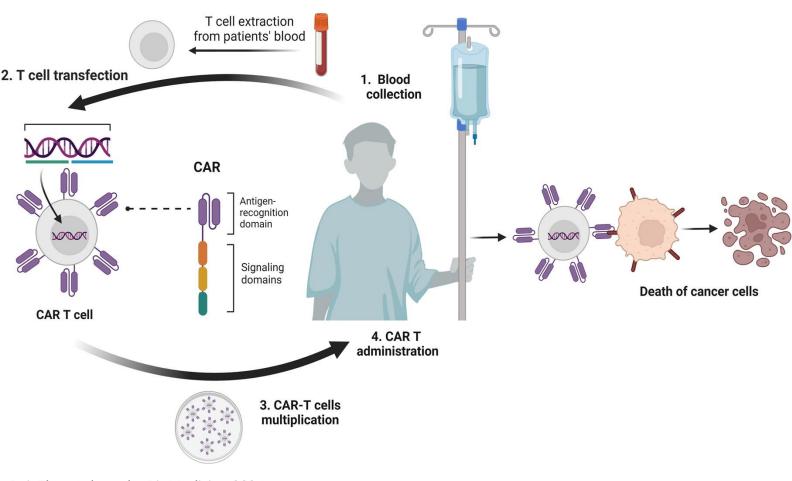
New patient μ_{new}

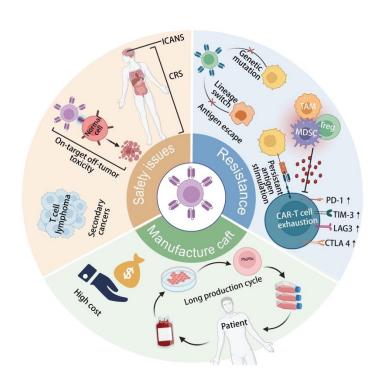
Jannis Born

Benedek Harsanyi

Alice Driessen

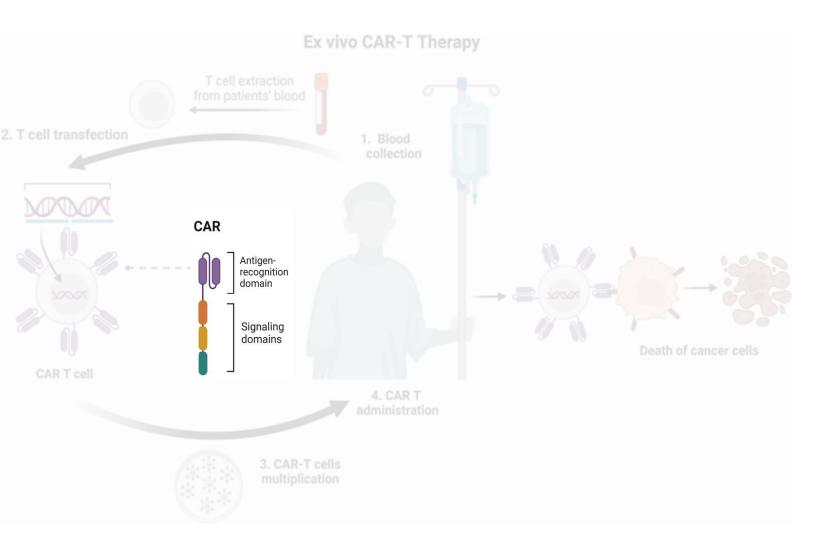
^{*}Driessen et al. (under review) arXiv:2504.08328





Li Ying et al. Frontiers in Immunology 2024

Bui, Thuy Anh et al. eBioMedicine 2024

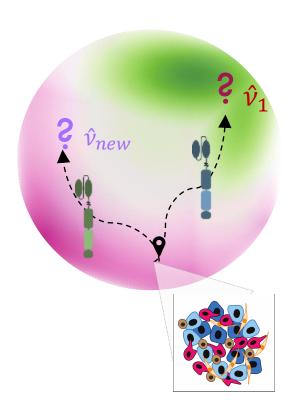


Co-stimulatory Ig Superfamily **CD28** B7-2/CD86 Antigen B7-H2/ICOS L recognition B7/CD28 Families domain Unknown Receptors 2Ig B7-H3 4Ig B7-H3 B7-H7 (Human) Co-stimulatory lg Superfamily T Cell BTNL8 Unknown (Human) Receptor Signalling domains CD48/SLAMF2 (Mouse and Rat) CD2 CD58/LFA-3 SLAM Family TIM Family Nectin and DNAM-1/ Nectin-like CD155/PVR 1118 **Binding** Receptors

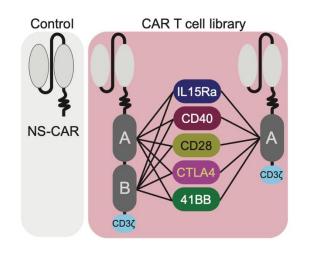
>100'000 possible CARs

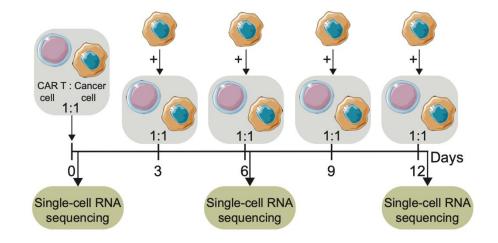
Co-stimulatory Ig Superfamily **CD28** B7-2/CD86 Antigen B7-H2/ICOS L recognition B7/CD28 domain Unknown Receptors 2Ig B7-H3 4Ig B7-H3 B7-H7 (Human) Co-stimulatory lg Superfamily T Cell BTNL8 Unknown (Human) Receptor Signalling domains CD48/SLAMF2 (Mouse and Rat) CD58/LFA-3 SLAM Family TIM Family Nectin and DNAM-1/ Nectin-like **Binding** Receptors

>100'000 possible CARs



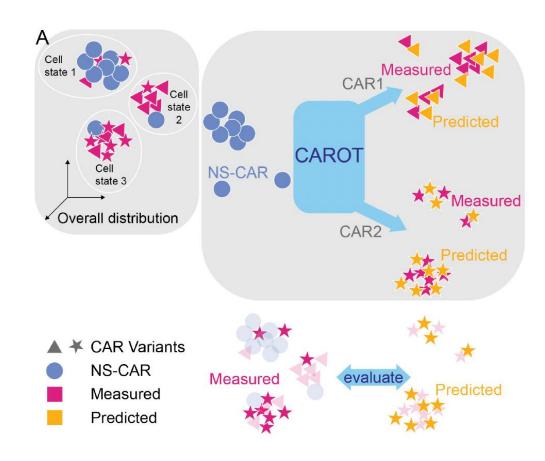
Alice Driessen

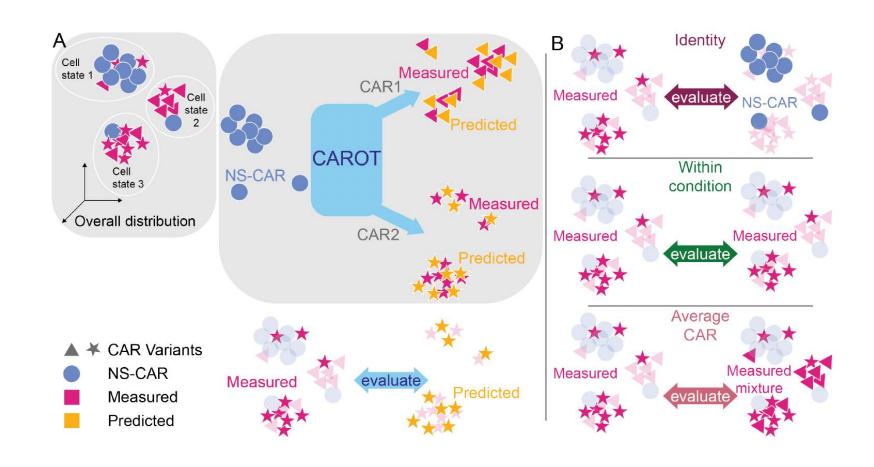




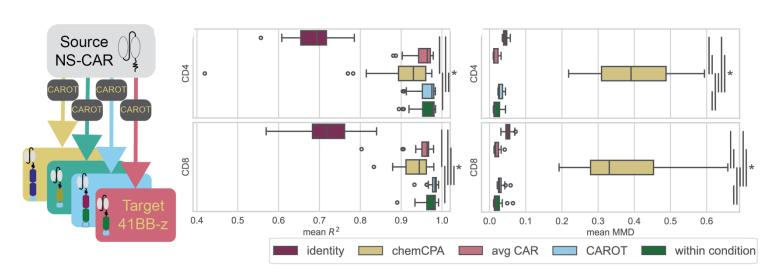
30 different CAR designs

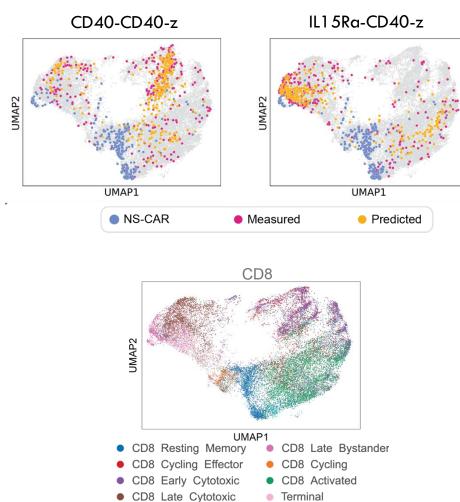
Collaboration with Prof. Sai Reddy, ETHZ BSSE



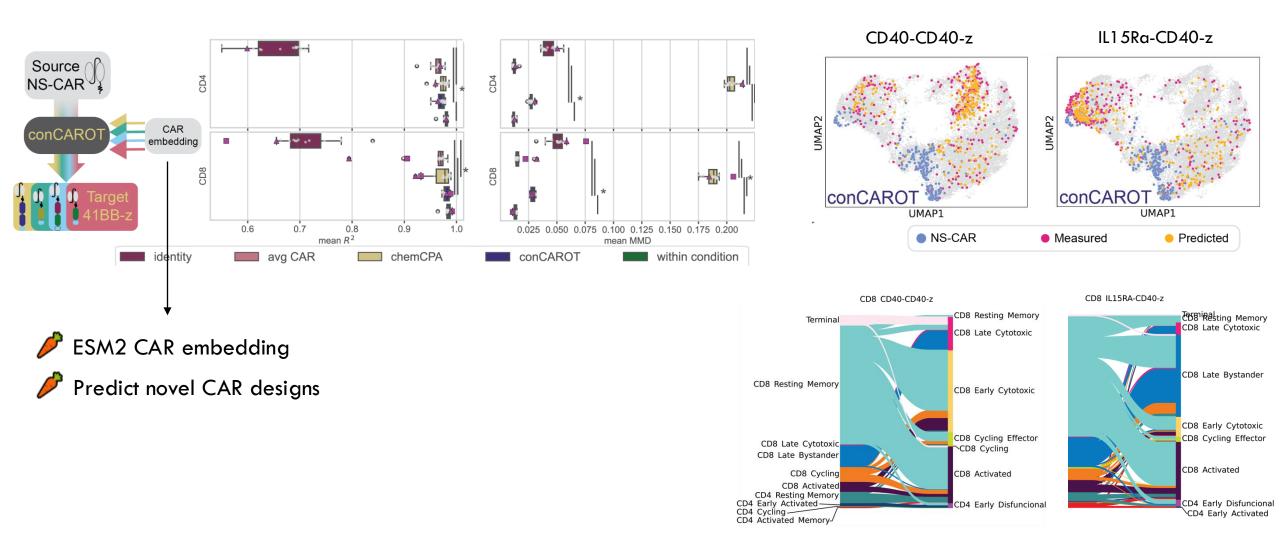


One CAROT model per CAR

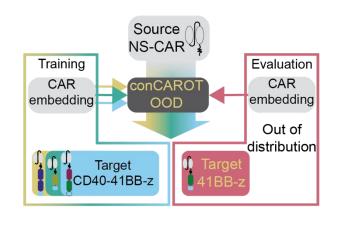


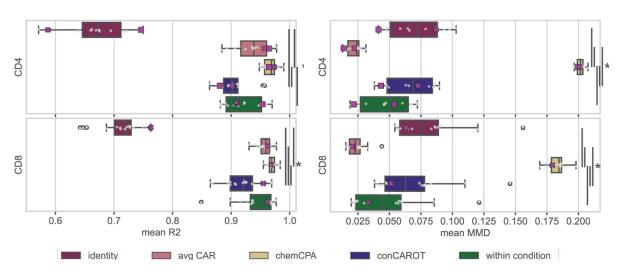


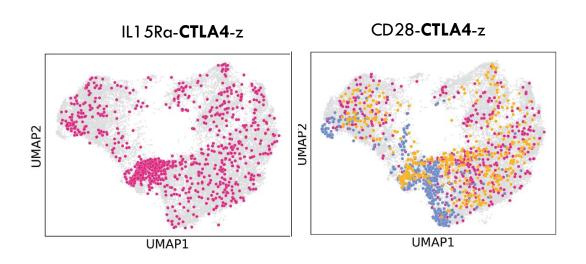
One CAROT model across all CARs



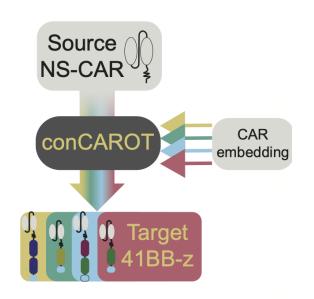
One CAROT model on unseen CARs







CAROT: modeling response to CAR T cell therapy with conditional OT

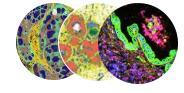


- First single-cell generative AI CAR T cell model
- Conditional model on par with 1-1 model
- ESM2 CAR embedding: Predict novel CAR designs

Represent

Histopathology

Spatial omics



Clinical data

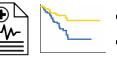
MatchCLOT: Gossi et al., Briefings in Bioinformatics,

Precision Dermatology: Predicting molecular

Upcoming: Multimodal Foundation models for

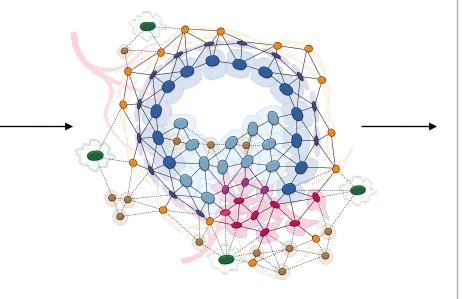
signatures from H&E (in prep)

oncology (in prep)



2023

Interpret

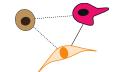


- ATHENA: Martinelli & Rapsomaniki, Bioinformatics, 2022
- ProteinPNet (McConnel, Imageomics NeurIPS, to appear)
- Concept learning and discovery (in prep)

Perturb

Perturbations

Biological discovery

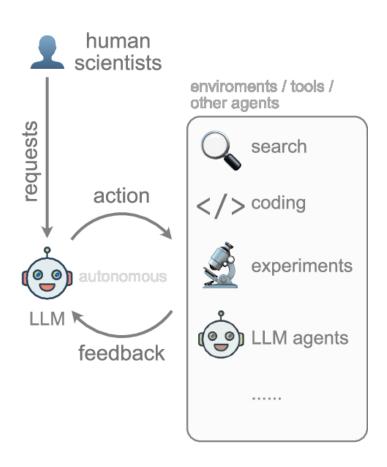


Treatment selection

Ovchinnikova et al., npj Precision Oncology, 2024

- CMonge: Driessen et al., ICML MLXGen Workshop, arxiv, 2024
- CAROT: Driessen et al., bioRxiv 2024.11.11.622906

Agentic Al: the new frontier?



Automating scientific discovery.

We're a non-profit building Al agents to automate research in biology and other complex sciences.

Today, we're announcing the first major discovery made by our Al Scientist with the lab in the loop: a promising new treatment for dry AMD, a major cause of blindness.

Our agents generated the hypotheses, designed the experiments, analyzed the data, iterated, even made figures for the paper. The resulting manuscript is a first-of-a-kind in the natural sciences, in which everything that needed to be done to write the paper was done by AI agents, apart from actually conducting the physical experiments in the lab and writing the final manuscript. We are also introducing Robin, the first multi-agent system that fully automates the in-silico components of scientific discovery, which made this discovery. This is the first time that we are aware of that hypothesis generation, experimentation, and data analysis have been joined up in closed loop, and is the beginning of a massive acceleration in the pace of scientific discovery that will be driven by these agents. We will be open-sourcing the code and data next week.

Owkin Launches K Navigator, a Ground-breaking Agentic Copilot to Speed up Breakthroughs in Biomedical Research by 20x

AI/ML for Biomedicine



marianna.rapsomaniki@unil.ch

Raphael Gottardo & Krisztian Homicsko

Jonathan Bac, Daria Buszta, Roberto Colotti, Estella Dong, Antoine Girardin, Bernd Illing, Senbai Kang, Jieran Sun, Spencer Watson

Department of Dermatology:

Prof. Michel Guillet, Dr. Jeremy Di Domizio, Dr. Hugo Cometto

IBM **Research** Zurich

Pushpak Pati Alice Driessen Jannis Born

каіко!

Robert Berke, Fei Tang

Sai Reddy & team

University of Bern

Marianna Kruithof-de Julio Sofia Karkampouna Francesco Bonollo Katia Ovchinnikova Martin Wartenberg

University of Vienna

Eva Comperat

Funding

marianna.rapsomaniki@unil.ch