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From biological stochasticity to tumor heterogeneity
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Intra-cell Intra-tumor Intra-patient Inter-patient



From single-cell biology… 
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Svensson et al., Nat Protocols, (2018)

Single-cell omics

Nature Method of the year 2013



… to multi-modal single-cell biology 

Zhu et al., Nat Methods, (2020)
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Single-cell omics

Nature Method of the year 2013

Single-cell multiomics

Nature Method of the year 2019



Single-cell omics

Nature Method of the year 2013

Single-cell multiomics

Nature Method of the year 2019

Spatial (single-cell) (multi) omics

Nature Method of the year 2020 & 2024 Imaging Mass Cytometry  - Human Placenta CODEX – Lymph node

Images from https://hubmapconsortium.org, 10Xgenomics.com and Nanostring.com 

Nanostring CosMx – Human Lung10X Xenium - Breast Cancer

5

… to spatial single-cell biology 



Single-cell omics

Nature Method of the year 2013

Single-cell multiomics

Nature Method of the year 2019

Spatial (single-cell) (multi) omics

Nature Method of the year 2020 & 2024
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Drug or Genetic Perturbations

… and perturbation biology 

Peidl et al., Nature Methods, 2024



Single-cell omics

Nature Method of the year 2013

Single-cell multiomics

Nature Method of the year 2019

Spatial (single-cell) (multi) omics

Nature Method of the year 2020 & 2024
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Drug or Genetic Perturbations

Whole tumors in health and disease, over time or under treatment 

down to the last single-cell, for millions of cells



8

Single-cell omics

Nature Method of the year 2013

Single-cell multiomics

Nature Method of the year 2019

Spatial (single-cell) (multi) omics

Nature Method of the year 2020 & 2024

Drug or Genetic Perturbations

Whole tumors in health and disease, over time or under treatment 

down to the last single-cell, for millions of cells

… to new paradigms in AI

Variational Autoencoders & Generative 

Adversarial Networks

2013 - 2014
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Single-cell omics
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Single-cell omics

Nature Method of the year 2013

Single-cell multiomics

Nature Method of the year 2019

Spatial (single-cell) (multi) omics

Nature Method of the year 2020 & 2024

Drug or Genetic Perturbations

Whole tumors in health and disease, over time or under treatment 

down to the last single-cell, for millions of cells

Variational Autoencoders & Generative 

Adversarial Networks

2013 - 2014

Transformers and Foundation models 

2017 - 2019

Multimodal models (DALL-E, CLIP)

2021

Agentic AI & Reasoning

Today

New modeling paradigms able to capture complex multimodal, 

spatiotemporal data, interact and reason

… to new paradigms in AI



Prediction of protein structure 

(Jumper et al., Nature, 2021) 

Structure of protein complexes 

(Humphreys et al., Science, 2021) 

De novo protein or enzyme design

(Watson et al., Nature, 2023) 
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Towards a general-purpose foundation model for computational pathology 

(Chen et al., Nature Medicine, 2024) 
A visual-language foundation model for computational pathology (Lu et al., 

Nature Medicine, 2024) 

A Multimodal Generative AI Copilot for Human Pathology 

(Lu et al., Nature, 2024) 

From molecules to whole tissues
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A reality check

Spatial omics

Histopathology

Clinical data

Molecular

Perturbations

A
va

ila
b

ili
ty

Avoiding Bias
Privacy and 

Security

Reliable and Safe Explainability

Models are not directly transferrable

Model selection/tuning

Validation and assessment

Generalizability

Modeling limitations

N
o
is

e
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Spatial omics

Histopathology Perturbations

Treatment selection

Biological discovery

Clinical data

Represent Interpret Perturb
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Spatial omics

Histopathology

Treatment selection

Biological discovery

How can we learn multimodal 
representations from spatial omics?

How can we interpret these 
representations of the TME?

How can we predict the 
effects of drug 
perturbations?

Perturbations

Clinical data

Represent Interpret Perturb
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Tumors are complex 

ecosystems! 



The Bottleneck: Scale, Cost, and Complexity
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Traditional histopathology:

✓ Fast & cheap

✓ Standardized protocols

ｘ Unaligned images (no multiplexing)

10X Xenium-Breast Cancer Nanostring CosMx –Lung CODEX – Lymph node
Spatial omics – multiplexed imaging:

✓ Many genes/proteins simultaneously

ｘ High cost and long turnaround

ｘ Specialized equipment

ｘ Tissue-destructive 

ｘ Small capture area 

Immunohistochemistry (IHC)

IMC - Human Placenta

Images from https://hubmapconsortium.org, 10Xgenomics.com and Nanostring.com 



Zhu et al., ICCV, 2017.
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Virtual staining

Source domain

Target domain

Target domain



Virtual Multiplexer
Multiplexed tumor profiling with generative AI

21

Pushpak Pati

Pati et al., Nature Machine Intelligence, 6, 1077–1093 (2024) 

Virtual staining:

✓ Fast & cheap

✓ Standardized protocols
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Pushpak Pati

Virtual staining:

✓ Fast & cheap

✓ Standardized protocols

Pati et al., Nature Machine Intelligence, 6, 1077–1093 (2024) 

Virtual Multiplexer
Multiplexed tumor profiling with generative AI

✓ Generates realistic virtual 

stains for several markers

✓ Unpaired data → paired, 

virtually multiplexed data

 



Bai et al., 2023.
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Unpaired image-to-image translation
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Unpaired image-to-image translation

https://www.tensorflow.org/tutorials/generative/cyclegan
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Unpaired image-to-image translation

https://www.tensorflow.org/tutorials/generative/cyclegan



Zhu et al., ICCV 2017
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Cycle consistency loss



Zhu et al., ICCV 2017
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Cycle consistency loss

https://github.com/junyanz/CycleGAN



VirtualMultiplexer: model architecture
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Source

Target (real)

Target (virtual)

Pati et al., Nature Machine Intelligence, 6, 1077–1093 (2024) 



VirtualMultiplexer: model architecture
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Effect of different losses

30
Pati et al., Nature Machine Intelligence, 6, pages1077–1093 (2024) 



EMPaCT prostate cancer TMA*: 

• 210 patients (4 cores / patient)

• 6 markers (NKX3.1, AR, CD44, CD146, p53, ERG)

• The VirtualMultiplexer outperformed all other methods in all 6 IHC markers in terms of FID score.

• Visual Turing test close to random guess: average sensitivity/ specificity of 52.1% / 54.1% across all six 

markers

• Virtual staining quality was on par or higher than real staining quality for 4/6 markers 

Real H&E Real IHC Virtual IHC

VV VR RV RR

Visual Turing 
Test

V   R

Staining 
quality

Performance assessment

31

Fréchet Inception 
Distance 

*https://zenodo.org/records/10066853
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Picasso Van Gogh Monet



Generalization on OOD WSIs
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Improved clinical predictions



EMPaCT (results on test data)
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Improved clinical predictions
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Transfer to other datasets - PANDA

Ground-Truth Gleason Score (GS): 3 + 4
(green: benign, blue: GS 3, yellow: GS 4)

Region attention for primary GS (3)

Region attention for secondary GS (4)



Draw me a cell? 
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3

4

5

6

CD146



Hallucination detection

38

Virtual staining 
model 

Source images

Generated stainings

Pixel-wise uncertainty maps

…

Hallucination 

detection

Uncertainty &  

robustness



Virtual Multiplexer
Multiplexed tumor profiling with generative AI
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✓ Consistently improved the prediction of 

clinically relevant endpoints

Towards AI-assisted histopathology: 

• Data inpainting, sample imputation, 

harmonizing datasets, experimental 

design

• Translation to cutting-edge spatial 

omics technologies (e.g., spatial 

transcriptomics) 

✓ Able to generalize to unseen cohorts 

and cancer types

Pati et al., Nature Machine Intelligence, 6, 1077–1093 (2024) 



An end-to-end AI framework for Inflammatory Skin Diseases
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ISD Patients

(n=126)
Histology

Bulk 

Transcriptomic 

Profiles

IMMUNE

MODULES

G
E
N

ES

PATIENTS

Atopic Dermatitis (AD)

Psoriasis (PsO)

Lichen Planus (LP)

Lupus Erythematosus (CLE)

Bullous Pemphigoid (BP)

Drug Hypersensitivity Reaction (DHR)

Wells Syndrome

Neutrophilc Diseases (NeuD)

Healthy Skin

1
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Can we extract H&E representations that capture tissue 

heterogeneity?

Can we use them to train AI models to predict 

molecular characteristics or diagnostic labels?

How interpretable and clinically understandable are 

the representations learned by these models?

Collaboration with Prof. Raphael Gottardo (BDSC) and Prof. Michel Gilliet (Department of 

Dermatology, CHUV) 

Team members: Antoine Girardin, Jeremy Di Domizio, Hugo ComettoMelissa Ensmenger



An end-to-end AI framework for Inflammatory Skin Diseases
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Segment and patch WSI H&E
Train MIL aggregator + head 

for prediction tasks

Explain prediction by visualizing patch 

attention scores

Patch-level Foundation Model

Hoptimus-06     –     UNI-v24      –     Virchow-28    – 

CONCH-v1.55     –    Hibou-L7  

Patch embeddings

Patient 

embedding

MIL Aggregator

Attention-based MIL 

module (ABMIL)

Prediction Head

2-layer MLP Attention Scores

= weights for patch aggregation

Trainable parametersFrozen weights

Extract patch embeddings with pre-

trained foundation models



An end-to-end AI framework for Inflammatory Skin Diseases
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Segment and patch WSI H&E
Extract patch embeddings with pre-

trained foundation models

Patch-level Foundation Model

Hoptimus-06     –     UNI-v24      –     Virchow-28    – 

CONCH-v1.55     –    Hibou-L7  

Patch embeddings

Frozen weights

FM representations capture different layers of the skin as well as 

specialized morphological structures and technical artifacts.

vessels glands dark stains

Patient ID Diagnosis

Leiden Clustering



An end-to-end AI framework for Inflammatory Skin Diseases
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Segment and patch WSI H&E
Train MIL aggregator + head 

for prediction tasks

Explain prediction by visualizing patch 

attention scores

Patch-level Foundation Model
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An end-to-end AI framework for Inflammatory Skin Diseases
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Train MIL aggregator + head 

for prediction tasks

Explain prediction by visualizing patch 

attention scores

Patient 

embedding

MIL Aggregator

Attention-based MIL 

module (ABMIL)

Prediction Head

2-layer MLP Attention Scores

= weights for patch aggregation

Trainable parameters

H&E patient embeddings Gene expression patient embeddings 

UMAP1 UMAP1

U
M

A
P
2

U
M

A
P
2



An end-to-end AI framework for Inflammatory Skin Diseases
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Train MIL aggregator + head 

for prediction tasks

Explain prediction by visualizing patch 

attention scores

Patient 

embedding

MIL Aggregator

Attention-based MIL 

module (ABMIL)

Prediction Head

2-layer MLP Attention Scores

= weights for patch aggregation

Trainable parameters

Our framework can predict joint immune pathway activity from tissue 

morphology (H&E)…

Comparison of 5-fold cross-validation Spearman correlations for pathway activity prediction 

between multi-target and single-target models* 

*trained on Hoptimus0 patch embeddings

Predicted (y-axis) vs. reference (x-axis) pathway activity for the multi-objective model 

(example test set of specific split)



An end-to-end AI framework for Inflammatory Skin Diseases
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Train MIL aggregator + head 

for prediction tasks

Explain prediction by visualizing patch 

attention scores

Patient 

embedding

MIL Aggregator

Attention-based MIL 

module (ABMIL)

Prediction Head

2-layer MLP Attention Scores

= weights for patch aggregation

Trainable parameters

Patch attention scores as a proxy for 

pathway activity 

(prediction) 

Pathway activity measured by spatial 

transcriptomics 

(Visium HD; consecutive slide)

(ground truth)

Predicted IFN-activity : 0.79 Measured IFN-activity : 1.34

Predicted Th1-activity : 1.60 Measured Th1-activity : 1.75

Pa
ti
e
nt

 1
 (

C
LE

)
Pa

ti
e
nt

 2
 (

LP
)

... and map it back to specific tissue regions using attention scores.



47

Spatial omics

Histopathology

Treatment selection

Biological discovery

How can we learn multimodal 
representations from spatial omics?

How can we interpret these 
representations of the TME?

How can we predict the 
effects of drug 
perturbations?

Perturbations

Clinical data

Represent Interpret Perturb



Interactions
Cells

Multimodal 

representations

48

Diagnosis/Prognosis 

Treatment selection

Biological discovery

Modeling the TME with Graph Representation Learning

Perturbations



Interactions
Cells

Multimodal 

representations
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Diagnosis/Prognosis 

Treatment selection

Biological discovery

Modeling the TME with Graph Representation Learning

Perturbations

Spatial heterogeneity features

Feature nFeature 1

ATHENA

{ Martinelli and Rapsomaniki, Bioinformatics (2022)

https://github.com/AI4SCR/ATHENA
Adriano Martinelli 

https://github.com/AI4SCR/ATHENA


Interactions
Cells

Multimodal 

representations
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Diagnosis/Prognosis 

Treatment selection

Biological discovery

Modeling the TME with Graph Representation Learning

Perturbations

Can we build explainable Graph ML 

models that learn diectly from data?



Theo Maffei

Post-hoc explainers are not consistent

58% LUAD, 36% LUSC

Predict LUAD vs. LUSC

Publicly available NSCLC IMC dataset (Cords et al., 2024). 



Theo Maffei

Post-hoc explainers are not consistent

Although GNN-based models achieves an F1-weighted score of 0.76, post hoc explainers exhibit limited 

agreement



ProteinPNet: Prototypical Part Networks for Concept 

Learning in Spatial Proteomics

53McConnel, Sun, Maffei, Gottardo, Rapsomaniki, Imageomics NeurIPS workshop (to appear) 

Louis McConnell



ProteinPNet: Prototypical Part Networks for Concept 

Learning in Spatial Proteomics

54McConnel, Sun, Maffei, Gottardo, Rapsomaniki, Imageomics NeurIPS workshop (to appear) 



Invasion and 

metastasis

Deregulated metabolism

Vasculature and  

Hypoxia

Cancer cell plasticityProliferative signaling

Tumor-promoting inflammation

55

Tumor-promoting inflammation

Invasion and metastasis

…

From TME complexity to interpretable concepts



Spatial biomarkers

predict

…

Concept embeddings

Concept graph  1

Concept graph 2

Concept graph N

GNN 1

GNN 2

GNN N

56

From TME complexity to interpretable concepts

interpret



57

MOSAIC: the world’s largest spatial multiomic dataset in oncology

Collaboration with Prof. Raphael Gottardo (BDSC), Dr. Krisztian Homicsko (Dept. of Oncology, CHUV), Prof. Laurence 

de Laval (Dept. Pathology, CHUV)

Team members: Sari Issa, Theo Maffei, Spencer Watson, Jonathan Bac
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Spatial omics

Histopathology

Treatment selection

Biological discovery

How can we learn multimodal 
representations from spatial omics?

How can we interpret these 
representations of the TME?

How can we predict the 
effects of drug 
perturbations?

Perturbations

Clinical data

Represent Interpret Perturb



High correlations of drug response metrics between cell 
lines of distinct origins

Ovchinnikova et al., npj Precision Oncology, 2024 59

Katia Ovchinnikova

Marianna Kruithof-de Julio

Jannis Born

IBM Research Zurich



Drug response is heavily affected by the inherent potency or toxicity 
of each drug independently of the cell line/organoid it was tested on

60

Pearson

Spearman
Organoids

Ovchinnikova et al., npj Precision Oncology, 2024



Z-score normalization for all values separately for each drug 
removes the drug-specific bias

Ovchinnikova et al., npj Precision Oncology, 2024
61

Pearson

Spearman
Organoids
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AI models are heavily affected by these issues!

P
e
a
rs

o
n’

s 
R

Train and tested on the GDSC dataset

Ovchinnikova et al., npj Precision Oncology, 2024
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o Challenge: scRNA-seq measurements are destructive, no 

direct pairing between cells

o Input: a dataset of before & after cell states coupled to 

perturbations 𝑝𝑖 𝜇𝑖, 𝜈𝑖

Predicting perturbation effects at the single-cell level

Initial state 𝜇1

Final state 𝜈1

Perturbation 𝑝1

Cell state space

𝑝𝑛

𝜈𝑛
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o Challenge: scRNA-seq measurements are destructive, no 

direct pairing between cells

o Input: a dataset of before & after cell states coupled to 

perturbations 𝑝𝑖 𝜇𝑖, 𝜈𝑖

o The problem: Given an unseen initial state 𝝁𝒏𝒆𝒘, predict 

the final state ෝ𝝂𝟏 after known perturbation 𝒑𝟏 or predict 

the final state ෝ𝝂𝒏𝒆𝒘 after unseen perturbation 𝒑𝒏𝒆𝒘

Predicting perturbation effects at the single-cell level

New patient 𝜇𝑛𝑒𝑤

Ƹ𝜈1

𝑝1

Cell state space

?

𝑝𝑛𝑒𝑤

Ƹ𝜈𝑛𝑒𝑤?
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o CMonge*: Use conditional Optimal Transport (OT) to learn 

transportation maps 𝑀𝑘 conditioned on covariates (e.g., dosage, 

drug, or cell type)

Predicting perturbation effects at the single-cell level

New patient 𝜇𝑛𝑒𝑤

Ƹ𝜈1

𝑝1

Cell state space

?

𝑝𝑛𝑒𝑤

Ƹ𝜈𝑛𝑒𝑤?

*Driessen et al. (under review) arXiv:2504.08328

Alice DriessenJannis Born Benedek Harsanyi
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Li Ying et al. Frontiers in Immunology 2024

Bui, Thuy Anh et al. eBioMedicine 2024

Modeling responses to CAR T cell therapy
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Bui, Thuy Anh et al. eBioMedicine 2024

Modeling responses to CAR T cell therapy
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>100’000 possible CARs
Antigen 
recognition 
domain

Si
gn

al
lin

g 
do

m
ai

ns
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Antigen 
recognition 
domain

Si
gn

al
lin

g 
do

m
ai

ns

>100’000 possible CARs

Ƹ𝜈1?
Ƹ𝜈𝑛𝑒𝑤?
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Modeling responses to CAR T cell therapy

Driessen et al., NeurIPS AIXDrug Spotlight, https://doi.org/10.1101/2024.11.11.622906

Alice Driessen

Collaboration with Prof. Sai Reddy, ETHZ BSSE

30 different CAR designs
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Modeling responses to CAR T cell therapy

Driessen et al., NeurIPS AIXDrug Spotlight, https://doi.org/10.1101/2024.11.11.622906



72

Modeling responses to CAR T cell therapy

Driessen et al., NeurIPS AIXDrug Spotlight, https://doi.org/10.1101/2024.11.11.622906
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One CAROT model per CAR

Driessen et al., NeurIPS AIXDrug Spotlight, https://doi.org/10.1101/2024.11.11.622906

CD40-CD40-z IL15Ra-CD40-z
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One CAROT model across all CARs 

Driessen et al., NeurIPS AIXDrug Spotlight, https://doi.org/10.1101/2024.11.11.622906

 ESM2 CAR embedding

 Predict novel CAR designs

CD40-CD40-z IL15Ra-CD40-z
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One CAROT model on unseen CARs 

Driessen et al., NeurIPS AIXDrug Spotlight, https://doi.org/10.1101/2024.11.11.622906

IL15Ra-CTLA4-z CD28-CTLA4-z
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  CAROT: modeling response to CAR T cell therapy with 

conditional OT

Driessen et al., NeurIPS AIXDrug Spotlight, https://doi.org/10.1101/2024.11.11.622906

 First single-cell generative AI CAR T 

cell model

 Conditional model on par with 1-1 

model

 ESM2 CAR embedding: Predict novel 

CAR designs
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Spatial omics

Histopathology

Treatment selection

Biological discovery

Perturbations

Clinical data

Represent Interpret Perturb

• MatchCLOT: Gossi et al., Briefings in Bioinformatics, 

2023

• Precision Dermatology: Predicting molecular 

signatures from H&E (in prep)

• Upcoming: Multimodal Foundation models for 

oncology (in prep)

• ATHENA: Martinelli & Rapsomaniki, Bioinformatics, 

2022

• ProteinPNet (McConnel, Imageomics NeurIPS, to 

appear)

• Concept learning and discovery (in prep)

• Ovchinnikova et al., npj Precision 

Oncology, 2024

• CMonge: Driessen et al., ICML MLXGen 

Workshop, arxiv, 2024

• CAROT: Driessen et al., 

bioRxiv 2024.11.11.622906
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Agentic AI: the new frontier?





AI/ML for Biomedicine

Adriano 

Martinelli 

Pushpak Pati

Alice Driessen

Jannis Born

University of Bern
Marianna Kruithof-de Julio

Sofia Karkampouna

Francesco Bonollo

Katia Ovchinnikova

Martin Wartenberg

University of Vienna
Eva Comperat

https://github.com/AI4SCR/ marianna.rapsomaniki@unil.ch

IBM Research Zurich

Louis 

McConnell

Melissa 
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Funding

Sari Issa

Theo Maffei

Jieran Sun
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Raphael Gottardo & Krisztian Homicsko

Jonathan Bac, Daria Buszta, Roberto Colotti, Estella 

Dong, Antoine Girardin, Bernd Illing, Senbai Kang, 

Jieran Sun, Spencer Watson

Pushpak Pati

Alice Driessen

Department of Dermatology: 

Prof. Michel Guillet, Dr. Jeremy Di Domizio, Dr. 
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Robert Berke, Fei Tang

https://github.com/AI4SCR/VirtualMultiplexer
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