Kernel-based perturbation testing for single-cell data

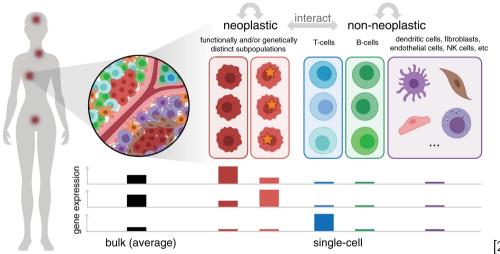
Franck Picard

Laboratoire Biologie et Modélisation de la Cellule. CNRS ENS-Lyon

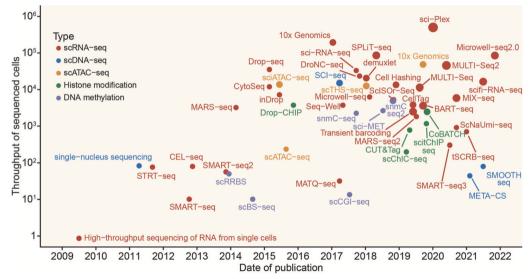
Outline

- 1. The Single-Cell Revolution
- 2. Comparison of Gene Expression Distributions
- 3. Introduction to kernel testing
- 4. Illustration
- 5. Towards perturbation analysis

From bulk to distributions of gene expression

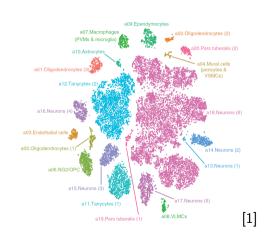


A timeline: produced data

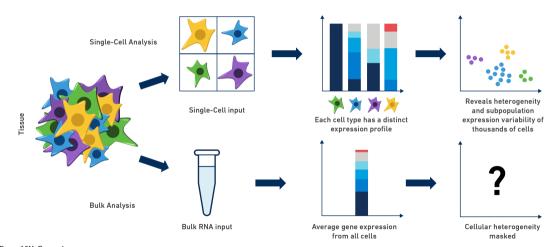


Machine Learning challenges

Dimension Reduction / Visualization
Clustering cell-type discovery
Datasets alignments
Catch cells-ecosystems behaviors
Simulation of fake data
Data integration
Genes expression comparison



Single-Cell from a statistician's perspective



From 10X Genomics

Comparing Biological Conditions

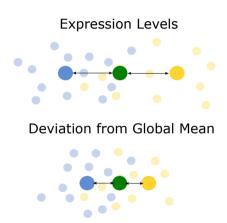
Gene-wise comparison

Statistical Testing

- → Score the difference
- \rightarrow Control type-I errors

Single-cell data $n \sim 10^6$

Try non-parametrics!

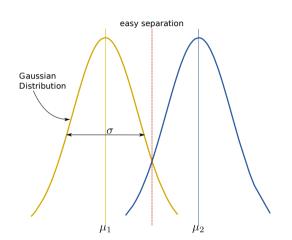


Statistical Setting: two-sample test

logFC are valid provided μ and σ are good summaries of the information

Easy linear separation

Not adapted to single-cell assays



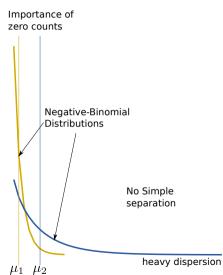
sc-RNAseq data are count data

Specificities: discrete, zeros

How to define the signal-to-noise ratio?

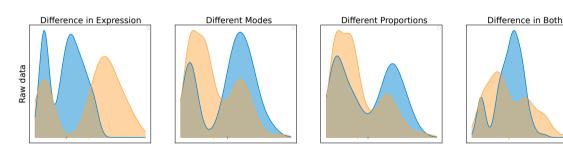
Standard: Negative Binomial distribution

Linear separation with GLM (parametric)



sc-RNASeq are complex count distributions

Compare Gene Expression distributions \mathbb{P}_1 vs \mathbb{P}_2



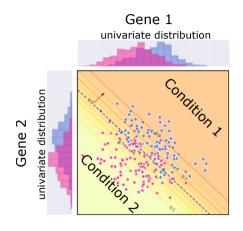
 \rightarrow No simple linear separation

Gene-Wise Strategy: a Good Option?

Gene Expressions are highly dependent

Multivariate distributions

Calls for non-linear embedding



Joint distribution

[6]

Statistical Challenge

Statistical testing is based on what is expected under \mathcal{H}_0

Control the random fluctuations of the embeddings under the null

Li et al. Genome Biology (2022) 23:79 https://doi.org/10.1186/s13059-022-02648-4 Genome Biology

SHORT REPORT

Open Access

Exaggerated false positives by popular differential expression methods when analyzing human population samples

Yumei Li^{1†}, Xinzhou Ge^{2†}, Fanglue Peng³, Wei Li^{1*} and Jingyi Jessica Li^{2,4,5,6,7*} o

ightarrow Risk: detect a difference whereas the appropriate model there would not

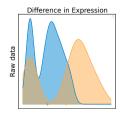
Take-Home Message Slide (1)

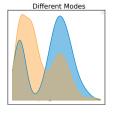
- ✓ Single-cell data are complex distributions
- ✓ the logFC may not be adapted to every situation
- √ pseudo-bulk approaches are possible (GLM)
- ✓ Only based on summary statistics
- √ A dedicated framework is required to perform differential analysis based on distribution

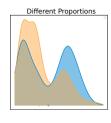
Outline

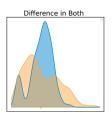
- 1. The Single-Cell Revolution
- 2. Comparison of Gene Expression Distributions
- 3. Introduction to kernel testing
- 4. Illustration
- 5. Towards perturbation analysis

Comparing Gene Expression Distributions







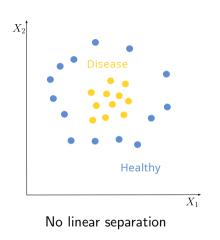


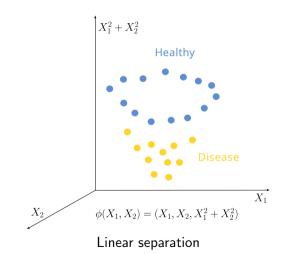
• Single-cell differential expression by distributions comparison :

$$\mathcal{H}_0:\left\{\mathbb{P}_1=\mathbb{P}_2\right\}$$

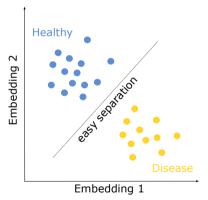
- No simple linear separation: SNR is not relevant anymore
- Idea: transform data into a new space
- Use SNR and linear separation on the transformed data

Data transformation for better separation

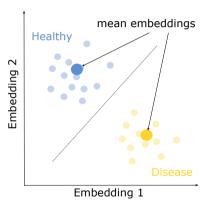




Rich Representations of complex data



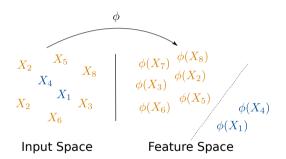
Work on joint transcriptomic embeddings



Mean embeddings by condition

What is an embedding?

- Transform the input data $X_i \to \phi(X_i)$
- New representation (UMAP, tSNE)
- Easy separation after transformation ?
- How to choose ϕ ?



Kernel Methods provide powerful embeddings

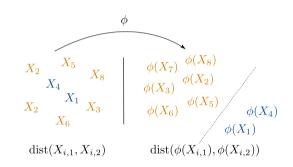
Similarity between data

$$\operatorname{dist}(X_{i,1},X_{i,2})$$

• Similarity between embeddings

$$\operatorname{dist}\!\left(\phi(X_{i,1}),\phi(X_{i,2})\right)$$

This is what does a kernel!



How to choose the kernel?

• Popular kernel : Gaussian kernel (h hyperparameter)

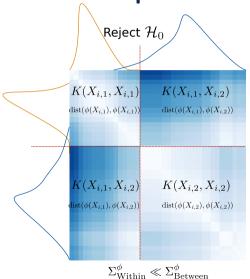
$$K(X_i, X_{i'}) \propto \exp \left\{-\frac{1}{2} \left(\frac{X_i - X_{i'}}{h}\right)^2\right\}$$

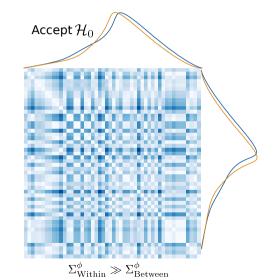
Theory ensures it is a distance between embeddings

$$K(X_i, X_{i'}) = dist(\phi(X_i), \phi(X_i))$$

ullet The embedding ϕ exists but does not need to be defined

Kernels to compare distributions





Take-Home Message Slide (2)

- √ Standard Differential Expression procedures can be applied by averaging data (pseudo bulk)
- √ Propose tests based on distributions comparisons
- √ Work on the embedding of distributions using a kernel
- √ Describe the distributions by the mean and the covariance of the embeddings

Outline

- 1. The Single-Cell Revolution
- 2. Comparison of Gene Expression Distributions
- 3. Introduction to kernel testing
- 4. Illustration
- 5. Towards perturbation analysis

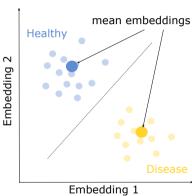
Embedding distributions

• Mean Embedding of \mathbb{P} :

$$\mu_{\mathbb{P}} = \mathbb{E}_{X \sim \mathbb{P}} \Big(\phi(X) \Big)$$

• Covariance of the embeddings under \mathbb{P} :

$$\Sigma_{\mathbb{P}} = \mathbb{E}_{X \sim \mathbb{P}} \Big[(\phi(X) - \mu_{\mathbb{P}})^{\otimes 2} \Big]$$



Mean embeddings by condition

Metric between distributions

• Testing H_0 requires a metric between distributions

$$\mathcal{H}_0:\left\{\mathbb{P}_1=\mathbb{P}_2
ight\}$$

Expected property of the metric

$$\mathbb{P}_1 = \mathbb{P}_2 \quad \Leftrightarrow \quad \mu_{\mathbb{P}_1} = \mu_{\mathbb{P}_2}.$$

• The Maximal Mean Discrepancy:

$$\mathsf{MMD}^2(\mathbb{P}_1, \mathbb{P}_2) = \|\mu_1 - \mu_2\|_{\mathcal{H}}^2$$

Computing the empirical MMD

Empirical mean embeddings and MMD

$$\widehat{\mu}_1 = \frac{1}{n_1} \sum_{i=1}^{n_1} \phi(X_{i,1}) \quad \widehat{\mu}_2 = \frac{1}{n_2} \sum_{i=1}^{n_2} \phi(X_{i,2})$$

$$\widehat{\mathsf{MMD}}^{2} = \|\widehat{\mu}_{2} - \widehat{\mu}_{1}\|_{\mathcal{H}}^{2} \\
= \frac{1}{n_{1}(n_{1}-1)} \sum_{i \neq i'} k(X_{i,1}, X_{i',1}) + \frac{1}{n_{2}(n_{2}-1)} \sum_{i \neq i'} \sum_{i=1}^{n_{2}} \sum_{i'=1}^{n_{2}} k(X_{i,2}, X_{i',2}) \\
- \frac{2}{n_{1}n_{2}} \sum_{i,i'} k(X_{i,1}, X_{i',2})$$

The MMD is a testing framework based on kernelized distances

Between/Within kernel trade-off

Intra-condition distances

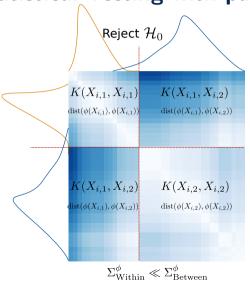
$$\frac{1}{n_1^2} \sum_{i=1}^{n_1} \sum_{i'=1}^{n_1} k(X_{i,1}, X_{i',1}) \quad \text{and} \quad \frac{1}{n_2^2} \sum_{i=1}^{n_2} \sum_{i'=1}^{n_2} k(X_{i,2}, X_{i',2})$$

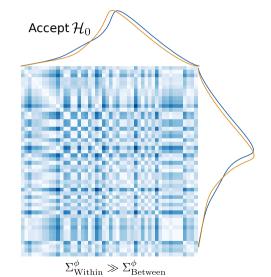
- → If small, conditions are homogeneous
- Inter-condition distance

$$\frac{1}{n_1} \frac{1}{n_2} \sum_{i=1}^{n_1} \sum_{i'=1}^{n_2} k(X_{i,1}, X_{i',2})$$

 \rightarrow If high, conditions are well separated

Statistical Testing with pair-wise distances





Considering Variances

Separated Conditions:

$$\Sigma_{Within} \ll \Sigma_{Between}$$

Similar conditions :

$$\Sigma_{Within} \sim \Sigma_{Between}$$

• Construct the discriminant ratio between conditions:

$$\mathsf{D}^2(\mathbb{P}_1,\mathbb{P}_2) = \Sigma_{\mathsf{Within}}^{-1} \Sigma_{\mathsf{Between}}$$

• Similar to a 1-way-ANOVA:

$$\phi(X) \sim ext{Condition}$$

Definition of Intra/Inter Variance of embeddings

• The MMD is linked to the between-group covariance

$$\widehat{\Sigma}_B = \frac{n_1 n_2}{n^2} \Big(\widehat{\mu}_2 - \widehat{\mu}_1 \Big)^{\otimes 2}$$

• Define the within-group covariances $\widehat{\Sigma}_1$ and $\widehat{\Sigma}_2$

$$\widehat{\Sigma}_1 = \frac{1}{n_1} \sum_{i=1}^{n_1} \left(\phi(X_{1,i}) - \widehat{\mu}_1 \right)^{\otimes 2}, \quad \widehat{\Sigma}_2 = \frac{1}{n_2} \sum_{i=1}^{n_2} \left(\phi(X_{2,i}) - \widehat{\mu}_2 \right)^{\otimes 2}$$

$$\Sigma_W = \frac{n_1}{n} \Sigma_1 + \frac{n_2}{n} \Sigma_2$$

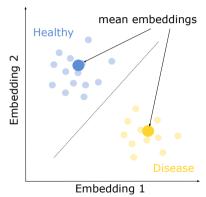
The Normalized MMD

The normalized MMD statistics is

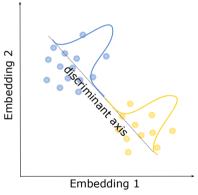
$$\mathsf{D}^2(\mathbb{P}_1, \mathbb{P}_2) = \frac{n_1 n_2}{n} \left\| \Sigma_W^{-\frac{1}{2}} (\mu_2 - \mu_1) \right\|_{\mathcal{H}}^2$$
$$\sim \frac{1}{n} \operatorname{Tr} \left(\Sigma_W^{-1} \Sigma_B \right)$$

- ullet It is a kernelized discriminant ratio with χ^2 distribution under \mathcal{H}_0
- The method is based on Kernel Fisher Discriminant Analysis

From Separation to Discrimination

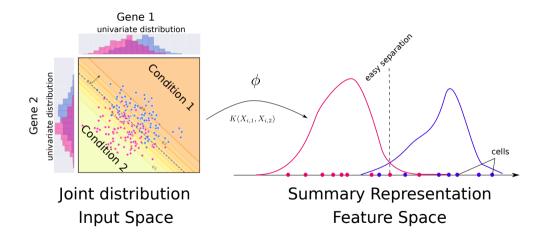


Mean embeddings by condition



Discrimination of cell populations

Towards Classification



Take-Home Message Slide (3)

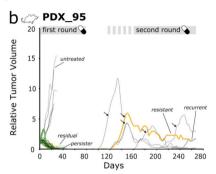
- ✓ Kernel methods can be used to define discrepancies between distributions
- ✓ Kernel tests are based on pair-wise distances between embeddings
- ✓ These distances can be normalized by embeddings variability
- √ pvalues can be obtained (approximations)
- √ The method is based on a classifier

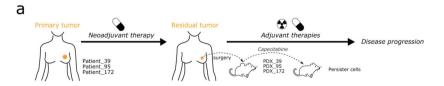
Outline

- 1. The Single-Cell Revolution
- 2. Comparison of Gene Expression Distributions
- 3. Introduction to kernel testing
- 4. Illustration
- 5. Towards perturbation analysis

ChemoResistance in Triple Negative Breast Cancer

- Emergence of resistant phenotypes is a multi-step process
- After drug insult only a pool of drug-tolerant persister cells manage to tolerate the treatment and survive.
- Reservoir from which drug-resistant cells can ultimately emerge.

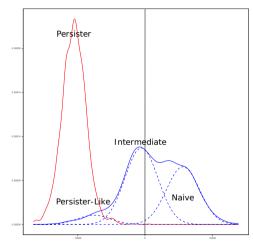




[5]

Kernel testing on Persister vs. Naive cells

- Persister cells survived the first treatment
- Reservoir for resistant cells
- Epigenomic data: 6376 features
- Compare untreated (\sim 3000 cells) vs. persister (\sim 2000 cells)
- Did we identify the reservoir of persister cells based on their epigenomic signatures
 ?



Summary of Whole Epigenome differences

METHOD Open Access

Kernel-based testing for single-cell differential analysis

A. Ozier-Lafontaine^{1*}, C. Fourneaux², G. Durif², P. Arsenteva¹, C. Vallot^{3,4}, O. Gandrillon², S. Gonin-Giraud², B. Michel^{1*†} and F. Picard^{2*†}

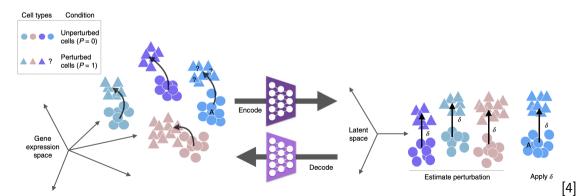
https://github.com/LMJL-Alea/ktest

Outline

- 1. The Single-Cell Revolution
- 2. Comparison of Gene Expression Distributions
- 3. Introduction to kernel testing
- 4. Illustration
- 5. Towards perturbation analysis

Context in Single-Cell Transcriptomics

- Modeling/predicting the effects of perturbations is a key task in systems biology.
- Capture the heterogeneity of cell populations using Supervised Dimension Reduction
- Latent space captures the signal to predict a cell's response to perturbation.



BRIEF COMMUNICATION

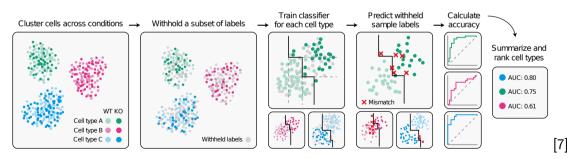
https://doi.org/10.1038/s41587-020-0605-1

Cell type prioritization in single-cell data

Michael A. Skinnider ^{1,2,9} ^{1,2}, Jordan W. Squair ^{1,3,4,9} ^{1,3}, Claudia Kathe ^{1,3}, Mark A. Anderson ^{1,3}, Matthieu Gautier ^{1,3}, Kaya J. E. Matson ⁵, Marco Milano ^{1,3}, Thomas H. Hutson ^{1,3}, Quentin Barraud ^{1,3}, Aaron A. Phillips ⁶, Leonard J. Foster ^{2,7}, Gioele La Manno ¹, Ariel J. Levine ⁵ and Grégoire Courtine ^{1,3,8} ^{1,3,8}

New Paradigm

- Identify cell-types more responsive to biological perturbations
- Hypothesis: responsive cell-types should be more separable
- Cell-types are prioritized based on the area under the curve AUC



The two sides of Supervised Learning

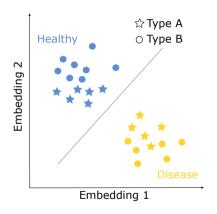
Classification

- Observe $(y_1, x_1), \ldots, (y_n, x_n)$
- Construct a predictor $f: \mathcal{X} \to \mathcal{Y}$
- Predict a new y
- \mathcal{H}_1 is not properly defined
- Pros: differences are not well defined
- Cons: x2 data to reach the same power

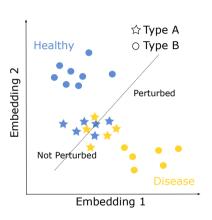
Statistical Testing

- Observe $(y_1, x_1), \ldots, (y_n, x_n)$
- Define a test statistic
- Control Type-I error
- Ensure power
- Pros: powerful if \mathcal{H}_1 can be defined
- Cons: when \mathcal{H}_1 is ill-defined

From Differential Analysis to Perturbation Analysis

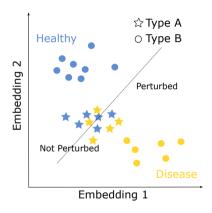


All Cell-types perturbed

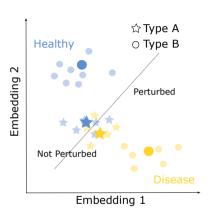


Differential Perturbation

Perturbed Mean Embeddings



Differential Perturbation



Interaction Treatment × Cell-types

ANOVA for non-linear Embeddings

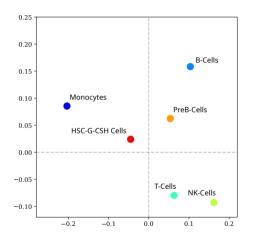
• Complex design : treatment, cell types factors

$$\phi(\mathsf{Expression}) \sim \mathsf{treatment} + \mathsf{celltype} + \mathsf{treatment} \times \mathsf{celltype}$$

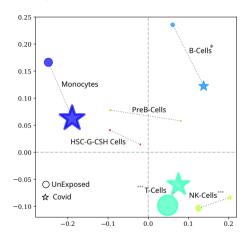
• Identify Perturbed cell types using contrasts

$$\mathcal{H}_0^{\bigstar}: \Big\{ \mathtt{Healthy} \times \bigstar = \mathtt{Disease} \times \bigstar \Big\}$$
 $\mathcal{H}_0^{\mathsf{O}}: \Big\{ \mathtt{Healthy} \times \mathsf{O} = \mathtt{Disease} \times \mathsf{O} \Big\}$

Non-Linear perturbations following Covid Exposure

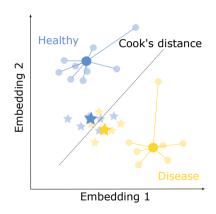


Cell-Type Effect***



Interaction Cell-Type × Disease***

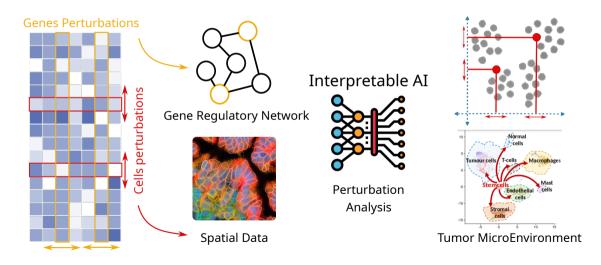
Soon Included



Atypical Cells identification

Multi-patients Designs

Perspectives



Perspectives

ANOVA approach:

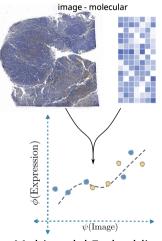
$$\phi$$
(Expression) = $\mathbf{X}\boldsymbol{\beta} + \boldsymbol{E}$

- Test Contrasts: $\mathbf{C}\beta = 0$
- Regression Approach

$$\phi(\mathsf{Expression}) = \psi(\mathsf{Covariates})\beta + E$$

- Test conditional independence: $\beta = 0$
- Covariates can be space! (SPARK-X!)

Data integration



Multimodal Embeddings

Acknowledgments

- Anthony Ozier-Lafontaine, Bertrand Michel, Perrine Lacroix, Nantes University
- Polina Arsenteva, Ghislain Durif, Lucy Attwood, ENS Lyon
- Vincent Rivoirard, Dauphine University
- Philippe Bertolino, CRCL, Lyon
- PEPR Digital Health (Al4scMed), ANR

References

- J. N. Campbell, E. Z. Macosko, H. Fenselau, T. H. Pers, A. Lyubetskaya, D. Tenen, M. Goldman, A. M. Verstegen, J. M. Resch, S. A. McCarroll, E. D. Rosen, B. Lowell, and L. T. Tsai. A molecular census of arcuate hypothalamus and median eminence cell types. *Nat. Neurosci.*, 20(3):484–496, Mar 2017.
- [2] J. Fan, K. Slowikowski, and F. Zhang. Single-cell transcriptomics in cancer: computational challenges and opportunities. Exp Mol Med, 52(9):1452–1465, Sep 2020.
- [3] Q. Jia, H. Chu, Z. Jin, H. Long, and B. Zhu. High-throughput single-ell sequencing in cancer research. Signal Transduction and Targeted Therapy, 7(1), May 2022.
- [4] M. Lotfollahi, F. A. Wolf, and F. J. Theis. scgen predicts single-cell perturbation responses. Nature Methods, 16(8):715-721, July 2019.
- [5] J. Marsolier, P. Prompsy, A. Durand, A.-M. Lyne, C. Landragin, A. Trouchet, S. T. Bento, A. Eisele, S. Foulon, L. Baudre, K. Grosselin, M. Bohec, S. Baulande, A. Dahmani, L. Sourd, E. Letouzé, A.-V. Salomon, E. Marangoni, L. Perié, and C. Vallot. H3k27me3 conditions chemotolerance in triple-negative breast cancer. *Nature Genetics*, 54(4):459–468, Apr. 2022.
- [6] V. Ntranos, L. Yi, P. Melsted, and L. Pachter. A discriminative learning approach to differential expression analysis for single-cell rna-seq. Nature Methods, 16(2):163–166, Jan. 2019.
- [7] M. A. Skinnider, J. W. Squair, C. Kathe, M. A. Anderson, M. Gautier, K. J. E. Matson, M. Milano, T. H. Hutson, Q. Barraud, A. A. Phillips, L. J. Foster, G. La Manno, A. J. Levine, and G. Courtine. Cell type prioritization in single-cell data. Nature Biotechnology, 39(1):30–34, July 2020.