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From bulk to distributions of gene expression

[2]
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A timeline: produced data

[3]
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Machine Learning challenges

Dimension Reduction / Visualization

Clustering cell-type discovery

Datasets alignments

Catch cells-ecosystems behaviors

Simulation of fake data

Data integration

Genes expression comparison

[1]
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Single-Cell from a statistician’s perspective

From 10X Genomics
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Comparing Biological Conditions

Gene-wise comparison

Statistical Testing

→ Score the difference
→ Control type-I errors

Single-cell data n ∼ 106

Try non-parametrics !

Deviation from Global Mean

Expression Levels
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Statistical Setting: two-sample test

logFC are valid provided µ and σ are
good summaries of the information

Easy linear separation

Not adapted to single-cell assays

Gaussian 
Distribution

easy separation
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sc-RNAseq data are count data

Specificities: discrete, zeros

How to define the signal-to-noise ratio ?

Standard: Negative Binomial distribution

Linear separation with GLM (parametric)

Negative-Binomial
Distributions

heavy dispersion

Importance of 
zero counts

No Simple 
separation
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sc-RNASeq are complex count distributions

Compare Gene Expression distributions P1 vs P2
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Difference in Expression Different Modes Different Proportions Difference in Both

→ No simple linear separation
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Gene-Wise Strategy: a Good Option ?

Gene Expressions are highly dependent

Multivariate distributions

Calls for non-linear embedding

Gene 1
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Condition 2

univariate distribution
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Joint distribution [6]
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Statistical Challenge
Statistical testing is based on what is expected under H0

Control the random fluctuations of the embeddings under the null

→ Risk: detect a difference whereas the appropriate model there would not
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Take-Home Message Slide (1)

✓ Single-cell data are complex distributions

✓ the logFC may not be adapted to every situation

✓ pseudo-bulk approaches are possible (GLM)

✓ Only based on summary statistics

✓ A dedicated framework is required to perform differential analysis based on distribution
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Comparing Gene Expression Distributions

R
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Difference in Expression Different Modes Different Proportions Difference in Both

• Single-cell differential expression by distributions comparison :

H0 :
{
P1 = P2

}
• No simple linear separation: SNR is not relevant anymore

• Idea: transform data into a new space

• Use SNR and linear separation on the transformed data
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Data transformation for better separation

Healthy

Disease

No linear separation

Healthy

Disease

Linear separation
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Rich Representations of complex data

Embedding 1
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Healthy

Disease

Work on joint transcriptomic embeddings

Embedding 1
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Disease

mean embeddings

Mean embeddings by condition
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What is an embedding ?

• Transform the input data Xi → ϕ(Xi )

• New representation (UMAP, tSNE)

• Easy separation after transformation ?

• How to choose ϕ ? Input Space Feature Space
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Kernel Methods provide powerful embeddings

• Similarity between data

dist
(
Xi ,1,Xi ,2

)
• Similarity between embeddings

dist
(
ϕ(Xi ,1), ϕ(Xi ,2)

)
• This is what does a kernel !
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How to choose the kernel ?

• Popular kernel : Gaussian kernel (h hyperparameter)

K (Xi ,Xi ′) ∝ exp

{
−1

2

(
Xi − Xi ′

h

)2
}

• Theory ensures it is a distance between embeddings

K (Xi ,Xi ′) = dist
(
ϕ(Xi ), ϕ(Xi )

)
• The embedding ϕ exists but does not need to be defined
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Kernels to compare distributions

Reject Accept
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Take-Home Message Slide (2)

✓ Standard Differential Expression procedures can be applied by averaging data (pseudo
bulk)

✓ Propose tests based on distributions comparisons

✓ Work on the embedding of distributions using a kernel

✓ Describe the distributions by the mean and the covariance of the embeddings
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Embedding distributions

• Mean Embedding of P:

µP = EX∼P

(
ϕ(X )

)
• Covariance of the embeddings under P:

ΣP = EX∼P

[
(ϕ(X )− µP)

⊗2
]

Embedding 1

Em
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dd
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g 
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Healthy

Disease

mean embeddings

Mean embeddings by condition
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Metric between distributions

• Testing H0 requires a metric between distributions

H0 :
{
P1 = P2

}
• Expected property of the metric

P1 = P2 ⇔ µP1 = µP2 .

• The Maximal Mean Discrepancy:

MMD2(P1,P2) = ∥µ1 − µ2∥2H
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Computing the empirical MMD
• Empirical mean embeddings and MMD

µ̂1 =
1

n1

n1∑
i=1

ϕ(Xi ,1) µ̂2 =
1

n2

n2∑
i=1

ϕ(Xi ,2)

M̂MD
2

= ∥µ̂2 − µ̂1∥2H

=
1

n1(n1 − 1)

∑
i ̸=i ′

k(Xi ,1,Xi ′,1) +
1

n2(n2 − 1)

∑
i ̸=i ′

n2∑
i=1

n2∑
i ′=1

k(Xi ,2,Xi ′,2)

− 2

n1n2

∑
i ,i ′

k(Xi ,1,Xi ′,2)

• The MMD is a testing framework based on kernelized distances
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Between/Within kernel trade-off

• Intra-condition distances

1

n21

n1∑
i=1

n1∑
i ′=1

k(Xi ,1,Xi ′,1) and
1

n22

n2∑
i=1

n2∑
i ′=1

k(Xi ,2,Xi ′,2)

→ If small, conditions are homogeneous

• Inter-condition distance
1

n1

1

n2

n1∑
i=1

n2∑
i ′=1

k(Xi ,1,Xi ′,2)

→ If high, conditions are well separated
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Statistical Testing with pair-wise distances

Reject Accept
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Considering Variances

• Separated Conditions:
ΣWithin ≪ ΣBetween

• Similar conditions :
ΣWithin ∼ ΣBetween

• Construct the discriminant ratio between conditions:

D2(P1,P2) = Σ−1
WithinΣBetween

• Similar to a 1-way-ANOVA:
ϕ(X ) ∼ Condition
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Definition of Intra/Inter Variance of embeddings

• The MMD is linked to the between-group covariance

Σ̂B =
n1n2
n2

(
µ̂2 − µ̂1

)⊗2

• Define the within-group covariances Σ̂1 and Σ̂2

Σ̂1 =
1

n1

n1∑
i=1

(
ϕ(X1,i )− µ̂1

)⊗2
, Σ̂2 =

1

n2

n2∑
i=1

(
ϕ(X2,i )− µ̂2

)⊗2

ΣW =
n1
n
Σ1 +

n2
n
Σ2
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The Normalized MMD

• The normalized MMD statistics is

D2(P1,P2) =
n1n2
n

∥∥∥∥Σ− 1
2

W (µ2 − µ1)

∥∥∥∥2
H

∼ 1

n
Tr

(
Σ−1
W ΣB

)
• It is a kernelized discriminant ratio with χ2 distribution under H0

• The method is based on Kernel Fisher Discriminant Analysis
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From Separation to Discrimination
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mean embeddings

Mean embeddings by condition
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inant axis

Discrimination of cell populations
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Towards Classification
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Take-Home Message Slide (3)

✓ Kernel methods can be used to define discrepancies between distributions

✓ Kernel tests are based on pair-wise distances between embeddings

✓ These distances can be normalized by embeddings variability

✓ pvalues can be obtained (approximations)

✓ The method is based on a classifier
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ChemoResistance in Triple Negative Breast Cancer

• Emergence of resistant phenotypes is a
multi-step process

• After drug insult only a pool of
drug-tolerant persister cells manage to
tolerate the treatment and survive.

• Reservoir from which drug-resistant cells
can ultimately emerge.

[5]
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Kernel testing on Persister vs. Naive cells

• Persister cells survived the first treatment

• Reservoir for resistant cells

• Epigenomic data: 6376 features

• Compare untreated (∼ 3000 cells) vs.
persister (∼ 2000 cells)

• Did we identify the reservoir of persister
cells based on their epigenomic signatures
?

0.00000

0.00005

0.00010

0.00015

0.00020

−10000 0 10000

Naive

Intermediate

Persister-Like

Persister

Summary of Whole Epigenome differences
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https://github.com/LMJL-Alea/ktest

38 / 52

https://github.com/LMJL-Alea/ktest


Outline

1. The Single-Cell Revolution

2. Comparison of Gene Expression Distributions

3. Introduction to kernel testing

4. Illustration

5. Towards perturbation analysis

39 / 52



Context in Single-Cell Transcriptomics
• Modeling/predicting the effects of perturbations is a key task in systems biology.

• Capture the heterogeneity of cell populations using Supervised Dimension Reduction

• Latent space captures the signal to predict a cell’s response to perturbation.

[4]
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New Paradigm

• Identify cell-types more responsive to biological perturbations

• Hypothesis: responsive cell-types should be more separable

• Cell-types are prioritized based on the area under the curve AUC

Train classifier
for each cell type

Mismatch

Predict withheld
sample labels

Calculate
accuracy

Summarize and
rank cell types

AUC: 0.75

AUC: 0.61

AUC: 0.80

Withheld labels

Withhold a subset of labelsCluster cells across conditions

Cell type C

Cell type B

Cell type A

WT KO

[7]
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The two sides of Supervised Learning

Classification

• Observe (y1, x1), . . . , (yn, xn)

• Construct a predictor f : X → Y
• Predict a new y

• H1 is not properly defined

• Pros: differences are not well defined

• Cons: x2 data to reach the same power

Statistical Testing

• Observe (y1, x1), . . . , (yn, xn)

• Define a test statistic

• Control Type-I error

• Ensure power

• Pros: powerful if H1 can be defined

• Cons: when H1 is ill-defined
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From Differential Analysis to Perturbation Analysis
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All Cell-types perturbed
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Not Perturbed

Perturbed

Differential Perturbation
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Perturbed Mean Embeddings
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ANOVA for non-linear Embeddings

• Complex design : treatment, cell types factors

ϕ(Expression) ∼ treatment+ celltype+ treatment× celltype

• Identify Perturbed cell types using contrasts

H⋆
0 :

{
Healthy×⋆ = Disease×⋆

}
H◦0 :

{
Healthy×◦ = Disease×◦

}
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Non-Linear perturbations following Covid Exposure

Monocytes

B-Cells

T-Cells
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Soon Included

Embedding 1
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Disease

Cook's distance

Atypical Cells identification Multi-patients Designs
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Perspectives
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Genes Perturbations

Interpretable AI

Gene Regulatory Network

Perturbation
Analysis

Spatial Data Tumor MicroEnvironment
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Perspectives

• ANOVA approach:

ϕ(Expression) = Xβ + E

• Test Contrasts: Cβ = 0

• Regression Approach

ϕ(Expression) = ψ(Covariates)β + E

• Test conditional independence: β = 0

• Covariates can be space ! (SPARK-X !)
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